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The differences in life-history traits and processes between
organisms living in the same or different populations contribute
to their ecological and evolutionary dynamics. We developed
mixed-effect model formulations of the popular size-at-age von
Bertalanffy and Gompertz growth functions to estimate
individual and group variation in body growth, using as a
model system four freshwater fish populations, where tagged
individuals were sampled for more than 10 years. We used the
software Template Model Builder to estimate the parameters of
the mixed-effect growth models. Tests on data that were not
used to estimate model parameters showed good predictions of
individual growth trajectories using the mixed-effects models
and starting from one single observation of body size early in
life; the best models had R2 > 0.80 over more than 500
predictions. Estimates of asymptotic size from the Gompertz
and von Bertalanffy models were not significantly correlated,
but their predictions of size-at-age of individuals were strongly
correlated (r > 0.99), which suggests that choosing between the
best models of the two growth functions would have negligible
effects on the predictions of size-at-age of individuals. Model
results pointed to size ranks that are largely maintained
throughout the lifetime of individuals in all populations.
1. Introduction
Understanding the causes of within- and among-population
variation in vital rates of organisms, such as their probability of
survival, growth, migration, and reproduction, life histories
(i.e. how vital rates vary together and the trade-offs among them),
and population dynamics (i.e. how the number of individuals in a
population changes over time) is a central topic in ecology and
evolutionary biology.
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Among vital rates, body growth is probably the one that has historically received the most attention,

since survival, sexual maturity, reproductive success, and movement and migration are frequently
associated with, or affected by, growth and body size [1]. Therefore, variation in growth within and
among populations contributes to their ecological and evolutionary dynamics [2–4], and a better
understanding of growth will always be an important problem in biology.

Mathematical and statistical models have been a staple of research in ecology and evolutionary
biology for many decades; they have been used for, among other goals, statistical inference,
identification, quantification, and prediction of biological and environmental processes and their
realizations, and decision-making in species management and conservation [5]. When studying the
growth of organisms in either applied or theoretical contexts, the identification of a functional form
that can reasonably approximate the observed trajectories is a crucial first step in the development
and application of a useful growth function. Structured or parametric models for describing and
predicting the growth of organisms that continue to increase in size after sexual maturity (i.e.
indeterminate growers, [6]) imply a basic functional form: size increases monotonically with time and
it usually tends to an upper asymptote later on in life. Since the modelling of mechanisms is more
informative than curve fitting (e.g. it allows to predict outside of the range of data observed and test
hypotheses on the determinants of growth), ideally the parameters of the growth function should
describe some of the physiological or life-history processes that affect growth. However, depending on
their assumptions and parametrizations, growth functions fitted on the same data can provide
different—sometimes in disagreement—insights into the growth process [7].

For vertebrates, the most widely used growth functions for size-at-age have been the Gompertz
(GGF) [8,9] and the von Bertalanffy growth functions (vBGF) [10], two special cases of the Richards
growth function [11]. The other macro-group of growth functions is auto-regressive functions, which
use the individual’s previous size to predict its size at the next time point (see [12] for a modern
study of those functions). Either the GGF or the vBGF are reasonable choices when modelling the
size-at-age of organism with initial slow growth, which then increases in speed before levelling off
toward adult value. Their most popular parametrizations include three parameters, one of which—the
asymptotic size—is common between the GGF and the vBGF.

In the vast majority of applications of growth models in ecology and evolutionary biology, the
parameters of growth functions have been estimated at the population level, and interpreted as those
of an average individual in the population [13]. However, estimates of parameters at the population
level neither describe nor explain the large variation in growth often observed in organisms living in
the same population. There are many examples of individuals (e.g. fish) living in the same population
and of similar age with very different—sometimes hugely different—sizes [14,15]; for most
investigations, we are thus interested in each individual, and not population- or group-average,
growth trajectory. Understanding which biological and environmental processes determine group and
individual variation in growth may also improve predictions of future growth and size of individuals
and populations, which are valuable for the conservation and management of species [16,17].

However, understanding the nature and contribution of sources of variation in growth faces a
number of experimental, methodological and computational challenges. First, we need longitudinal
data (i.e. multiple observations of the same individual through time) to tease apart growth variation
emerging from persistent differences among individuals or among groups from variation due to
stochastic processes [12,18], and to predict individual and (average) group growth trajectories.
Especially for long-lived and elusive organisms such as fish, the collection of longitudinal data can
take many years and much effort (e.g. individuals are usually tagged with a unique ID identifier and
are then re-captured over the next months or years), when at all possible. As marine scientist John
Sheperd said: ‘Managing fisheries is hard: it’s like managing a forest, in which the trees are invisible
and keep moving around’ (http://jgshepherd.com/thoughts/).

Longitudinal data are thus often sparse, and data for a particular individual are unlikely to be
sufficient for the estimation of parameters of its individual-specific growth model. However, we may
leverage data of other individuals that are thought to be similar to support the estimation of model
parameters for the data-poor individual (i.e. the concept of ‘borrowing strength’, [19]). Models in
which all members in a group influence the estimate of each effect are called either hierarchical,
random-effects, multi-level or mixed-effects models [20].

Random effects in mixed-effects models are realizations of a stochastic process. The assumption of
common statistical distribution implies a dependence between random effects, which means that the
estimate of the random effect for an individual is influenced by data and estimates of random effects for
all other individuals relating to the same factor or group (say, for an organism, year-of-birth, sex, location,
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or, at a coarser grain, the whole population when modelling the growth of individuals from different

populations). Since in mixed-effects models those realizations will be pulled toward the mean of the
group (shrinkage, [19]), the realizations that are strongly supported by data contribute more information
to the statistical distribution of the effects, and we are then less likely to over-interpret processes that are
the result of small sample sizes. Modelling and estimating random effects also address the lack of
independence between repeated measurements of the same individuals [20]. Mixed-effects models of
growth thus provide an intuitive framework for estimating heterogeneity of growth among individuals or
groups of individuals, approximate their growth trajectories, and predict their future sizes [21].

Second, growth models of organisms are often—if not always—nonlinear, and the estimation of
parameters of nonlinear models is intrinsically more computationally demanding than for linear
models. In practice, however, in order to investigate multiple parametrizations of complex models, we
need fast and reliable approaches to parameter estimation [13]. Although parameter estimation in
mixed-effects models can still require considerable work, the many—and in some cases
groundbreaking—advances in theory, algorithms and software of the last few years have made the
development of mixed-effect models and the estimation of their parameters much easier (i.e. the
optimization algorithms more reliably converge) and faster than it used to be [22,23].

Here, we take advantage of those recent theoretical and computational advances to proposemixed-effect
formulations of the von Bertalanffy and Gompertz growth functions that can help model individual and
group variation in the growth of organisms. Since [24] developed von Bertalanffy equations for individual
growth, several growth models describing or accounting for individual and group variation in growth,
along with algorithms for their fitting, have been developed [25]. For instance, [26] recently developed a
Bayesian state-space framework, there applied to the vBGF, for modelling growth that allows for intrinsic
individual variation in traits, a shared environment, process stochasticity and measurement error.
Contreras-Reyes et al. [27] developed a framework that comprised modelling of individual variability of
size-at-age, Bayesian inference and distribution of errors from the Student-t model.

Our work on growth is motivated by the long-term study of populations of marble trout (Salmo
marmoratus), brown trout (Salmo trutta L.), and rainbow trout (Oncorhynchus mykiss) living in Slovenian
streams. Marble, brown and rainbow trout populations were sampled each June and September for more
than 10 years (2004–2015), and the data show substantial variation in size-at-age of individuals [28–30].
Vincenzi et al. [30,31] showed that fast-growth allows trout populations to recover after massive
mortality events, such as those caused by flash floods, since fecundity tends to increase with fish size. In
addition, since growth and body size are heritable [32], there is potential for the evolution of growth
rates toward faster growth in populations affected by massive mortality events [33,34]. Therefore, models
of growth that can predict growth trajectories for individuals, groups (e.g. organisms born before or after
extreme events) and populations will greatly benefit our understanding of the resilience of populations
to extreme events and of the evolution of body growth in the affected populations.

In this paper, we: (i) propose mixed-effects, individual-based formulations of the well-known and
widely used von Bertalanffy and Gompertz growth functions, and show how their parameters can be
efficiently estimated with Template Model Builder, an open-source statistical software package for
fitting nonlinear, mixed-effects statistical models using the Laplace approximation [35]; (ii) use four
salmonid populations living in Slovenian streams as a model system to test the ability of the mixed-
effects growth models (i.e. von Bertalanffy and Gompertz growth functions with predictors of their
parameters, including random effects) to predict unobserved size-at-age of individuals; (iii) test
whether the life-history and biological processes determining the observed individual variation in
growth (in particular, the maintenance of size hierarchies among individuals throughout their
lifetime), are inferred differently when using the von Bertalanffy or the Gompertz growth function.
2. Material and methods
2.1. Study area and species description
Our study system includes the marble trout (Salmo marmoratus) populations of Lower Idrijca [LIdri_MT]
and Upper Idrijca [UIdri_MT] [28], rainbow trout (Oncorhynchus mykiss) population of Lower Idrijca
[LIdri_RT] [36], and brown trout (Salmo trutta L.) population of Upper Volaja [UVol_BT] [29]. All
streams are located in western Slovenia [36]. The streams Lower Idrijca and Upper Idrijca are a few
hundred metres apart and are separated by a dam. In LIdri, marble trout [LIdri_MT] live in sympatry
with rainbow trout [LIdri_RT] [36,37]. Both UIdri_MT and UVol_BT live in allopatry, that is no other
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fish species live in the streams. The LIdri_RT population was created in the 1960s [36] and the UVol_BT

population in the 1920s [29] by stocking rainbow and brown trout, respectively. Both populations have
been self-sustaining since their inception. Further details on the demographic and life-history traits of
these salmonid populations, along with their conservation status and current management practices,
can be found in [36].

2.2. Sampling
Populations were sampled bi-annually in June and September. The first sampling for LIdri_MT, LIdri_RT
and UIdri_MT was in June 2004, and in September 2004 for UVol_BT. If captured fish had length L >
115 mm, and had not been previously tagged or had lost a previously applied tag, they received a Carlin
tag [38], and their age was determined by reading scales [39]. Genetic tagging was then used to identify
fish that had received a new tag after losing theirs between sampling occasions [36]. Fish are 0+
( juveniles) in the first calendar year of life, 1+ in the second year and so on. Sub-yearling marble,
rainbow and brown trout are smaller than 115 mm in June and September, so fish were tagged when at
least aged 1+. Sampling protocols are described in greater details in [28] and [29]. Total number of fish
aged 1+ or older sampled from 2004 to 2015 was 1371 for LIdri_MT, 670 for UIdri_MT, 250 for LIdri_RT
and 2636 for UVol_BT.

2.3. Growth functions
Here, we introduce two of the most widely used growth functions in ecology, evolutionary biology and
fishery science: the von Bertalanffy and the Gompertz growth functions. Although there have been calls
for moving beyond the von Bertalanffy and Gompertz growth functions for statistical (e.g. negative
correlation between parameter estimates) and life-history (e.g. they do not account for the change in
energy allocation after sexual maturity) reasons [40], they are still popular—and almost the default
choices—among modellers.

2.3.1. The von Bertalanffy growth function

The vBGF has been used to model the growth of fish [41], mammals [42], snakes [43], birds [44] and
many other species and taxa. von Bertalanffy hypothesized that the growth of an organism results
from a dynamic balance between anabolic and catabolic processes [10]. If W(t) denotes mass at time t,
the von Bertalanffy assumption is that anabolic factors are proportional to surface area, which scales
as W(t)2/3, and that catabolic factors are proportional to mass. If a and b denote these scaling
parameters, then the rate of change of mass is

dW
dt

¼ aWðtÞ2=3 � bWðtÞ: ð2:1Þ

If we assume that mass and length (i.e. size), L(t), are related by W(t) = ρL(t)3 with ρ corresponding to
density, then calculus shows that

dL
dt

¼ q� kL, ð2:2Þ

where q = a/3ρ and k = b/3ρ.
Setting L1 ¼ q=k to be the asymptotic size and L(0) = L0 to be the initial size, two forms of the solution

are

LðtÞ ¼ L1ð1� e�ktÞ þ L0e�kt ð2:3Þ

and

LðtÞ ¼ L1ð1� e�kðt�t0ÞÞ, ð2:4Þ
where t0 is the hypothetical age at which length is equal to 0.

The forms of the vBGF in equations (2.3) and (2.4), which are derived following the assumption of
anabolism scaling with mass to the 2/3 power and mass scaling with the cube of size, are referred to
as the ‘specialized’ vBGF [45]. For simplicity, in this paper, we will simply use the term vBGF for the
‘specialized’ vBGF.
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If LðtÞ . L1, the rate of growth k (in time−1 units) is negative, so asymptotic size is the upper limit of size,

which is only attained in the limit of infinite time. In this work, we will use the formulation of the vBGF of
equation (2.4), which has three parameters: L∞, k and t0. Although the definition of asymptotic size
in the vBGF introduces an explicit linear relationship on the log scale between k and L∞ (i.e.
logðL1Þ ¼ logðqÞ � logðkÞ, according to equation (2.4)), in this work, we do not treat L∞ as equal to q/k
(see [7] for a formulation of the function explicitly including the link between L∞, q and k), but we let the
correlation between L∞ and k at the whole population and at the individual level emerge from data.

2.3.2. The Gompertz growth function

The Gompertz growth function (GGF) [8,9] has been used to model the growth of a variety of species and
taxa, from plants to birds and fish growth, to tumour and bacterial growth [46,47]. Contrary to the vBGF,
which was developed by von Bertalanffy from physiological principles, the Gompertz curve was first
proposed by Benjamin Gompertz [9] for modelling mortality curves, and later adopted for studies of
growth when it was empirically found that the GGF could well describe the growth trajectories of
many species [8]. Therefore, the biological interpretation of the parameters of the GGF is harder and
tends to be more a posteriori than that of the von Bertalanffy function (but see [48] for an example of
biological interpretation of the Gompertz model for tumour growth), and we introduce the
parameters of the GGF mostly as curve-fitting parameters.

The GGF has been used in a variety of parametrizations, with some formulations that have
parameters that are more interpretable than in others [46]. One commonly found parametrization for
the GGF is

LðtÞ ¼ A expð� expð�kGðt� TiÞ, ð2:5Þ
where L(t) is size at time t; A (we might also call this parameter L∞ like in the vBGF, since the two
parameters both represent the asymptotic size); kG (in time−1 units) is a coefficient of growth affecting
the slope; and Ti is time at inflection, which in this formulation occurs when 37% of the final growth
has been reached. Ti shifts the growth curve horizontally without changing its shape and therefore is
a location parameter, while A and kG are shape parameters.

2.4. Parameter estimation and individual variation
In this section, we will mostly make reference to the vBGF for describing mixed-effects models of growth
and the estimation of their parameters, but all assumptions and methods are also applicable to the GGF
and other similar size-at-age growth functions.

In the vast majority of applications of the vBGF and of the GGF, L∞, k and t0 (and A, kG and Ti) have
been estimated at the population level (i.e. without accounting for individual heterogeneity in growth)
starting from cross-sectional data, and interpreted as the growth parameters of an average individual
in the population (i.e. L∞ is the asymptotic size of an average or modal individual of the population
or species). In fishery science, vBGF’s k and L∞ and estimates of adult mortality are commonly used
descriptors of the life-history strategies of fish populations [49]. Age-structured stock assessment
methods can also be based on size-at-age estimations, which are often derived from parameters of the
von Bertalanffy growth model for that species [50].

Vincenzi et al. [7,13] presented formulations of the vBGF specific for longitudinal data where L∞, k
and t0 may be allowed to be a function of shared predictors and individual random effects. Since k
and L∞ must be non-negative, it is convenient to use a log-link function. We thus set for individual i
in group j

log(kij) ¼ a0 þ a
ðjÞ
1 þ a2xij þ suuij

log(LðijÞ1 ) ¼ b0 þ b
ðjÞ
1 þ b2dij þ svvij

tðijÞ0 ¼ g0 þ g
ðjÞ
1 þ g2fij þ szzij,

8>><
>>:

, ð2:6Þ

where u � Nð0,1Þ, v � Nð0,1Þ and z � Nð0,1Þ are the standardized individual random effects, σu, σv and
σz are the standard deviations of the statistical distributions of the random effects, aðjÞ

1 , bðjÞ
1 and g

ðjÞ
1 are

group (i.e. categorical) effects (e.g. species, population, sex, year-of-birth), and the other parameters
are defined as in equation (2.4). The continuous predictors xij, δij and ϕij in equation (2.6) (e.g.
population density, temperature, proxies of food quality and availability) do not need to enter linearly
into the predictor, and the terms α2xij, β2δij and γ2ϕij may be replaced by a more general function
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f ðxij; tÞ, where τ denotes a set of parameters to be estimated. For the GGF, the parameters A, kG and Ti are

set the same way as in equation (2.5).
Length of individual i in group j at age t is for the von Bertalanffy function

LijðtÞ ¼ LðijÞ1 ð1� e�kijðt�tðijÞ0 ÞÞ þ 1, ð2:7Þ
and for the Gompertz function

LijðtÞ ¼ AðijÞ expð� expð�kðijÞG ðt� TðijÞ
i Þ þ 1, ð2:8Þ

where ε is the observation error, which is time-invariant and normally distributed with mean 0 and
variance s2

1.
According to equations (2.7) and (2.8), a positive correlation between LðijÞ1 and kij (from now on we

will refer to them as L∞ and k at the individual level) and A(ij) and kðijÞG (A and kG at the individual
level) indicates that size ranks tend to be maintained through the life of individuals, while a negative
correlation indicates that size ranks tend not to be maintained [7,13].

2.5. Model fitting
It has often been difficult, if not impossible using standard approaches, to estimate parameters for many
of the proposed growth models using data on individual growth trajectories in natural settings (i.e. in the
wild). In addition to noisy and sparse data, and even in the presence of a large amount of data, a highly
parametrized nonlinear model may be only weakly statistically identifiable. Several modelling tools to fit
hierarchical models are now available, such as platform-independent BUGS [51], JAGS [52], Stan [53]
and, among many others, the nlme, lme4, NIMBLE, brms packages and associated functions in R
[22,54–56] or PyMC3 in Python [57].

However, when dealing with a large number of random effects, nonlinear models, and missing or
noisy data, some of those methods may fail to converge or take a very long time to converge, thus
limiting the number of explorations that can be carried out. Since many models are typically fitted
when investigating biological process, it is always convenient, and often necessary in practice, to use
algorithms and software that allow for rapid model exploration, for instance by reducing the time
needed for the optimization algorithm to converge or by finding a compromise between obtaining the
full posterior distribution of parameters (more computationally expensive) or only its summary
statistics (less computationally expensive).

A tool that has been recently developed for fitting highly parametrized mixed-effects models, and
which we used for fitting models in the present study, is Template Model Builder (TMB, [35]). TMB is
a general random-effects tool integrated in R that was inspired by ADMB (Automatic Differentiation
Model Builder [58]), an open-source statistical software package for fitting highly parametrized
nonlinear statistical models with or without random effects. TMB can fit generic random-effects
models using an empirical Bayes approach that evaluates and maximizes the Laplace approximation
of the marginal likelihood [59] using automatic differentiation. TMB computes standard errors of
parameter estimates and of predictions using the delta method [60], offers easy access to parallel
computations, and is very flexible in model formulation. Recent developments allow the estimation of
parameters of Bayesian models using TMB [61].

2.6. Statistical analyses
Prediction of future observables has long been included as an aspect of statistics, but it has been much
less prominent than parametric statistical inference [62]. More recently, it has been proposed that the
proper use of statistical models is the prediction of future observations, and not uncertainty around
estimates of model parameters [63]. In this work, we will evaluate models from the point of view of
both inference (parameter estimates and their biological interpretations) and predictive performance.

Since exploratory investigations often prevent the use of null-hypothesis testing, and multiple
comparisons increase the ‘researcher degrees of freedom’, including the choice of convenient
hypotheses to test [64], apart from some specific tests of correlation, we present and discuss our
model results from a qualitative point of view, that is without formal null-hypothesis testing.

We found empirically that for both the GGF and vBGF, the fitting algorithm converges more reliably
when size data are evenly spaced in time. For the analyses of growth, we thus used only September data
(unique fish sampled in September: LIdri_MT, n = 784; UIdri_MT, n = 502, LIdri_RT, n = 109, UVol_BT,
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n = 2434). Vincenzi et al. [28] found no or minor effects of population density, water temperature, or sex

on growth in Slovenian populations of marble, rainbow, and brown trout. In this study, we pooled all
data from different populations together and use only group variables as candidate factors for
explaining variation in growth. We introduced group predictors as fixed effects (since treating a factor
with just a few levels as ‘random’ may generate imprecise estimates of the associated standard
deviation [65]) to test whether they improved model performance with respect to a model with no
predictors other than random effects. In particular, we included as predictors (i) Species (three-level
predictor: marble trout, MT; brown trout, BT; rainbow trout, RT), and (ii) Population (four-level
predictor: LIdri_MT, UIdri_MT, LIdri_RT and UVol_BT) as a group (i.e. categorical) variable. We tested
for vBGF and GGF all the combination of Species, Population and Constant (i.e. no predictors) for the
three parameters of either growth function. We also experimented with Cohort (i.e. year-of-birth) as a
group predictor and with two-way interactions between Species, Population and Cohort.

We tested the predictive ability of the candidate vBGF and GGF models as follows. For each model,
we first tested for convergence of the TMB algorithm and computed the Akaike information criterion
(AIC [66]) when fitting the model on the whole dataset. We then: (i) identified fish that were sampled
more than three times; (ii) randomly sampled one-third of them (test dataset, 201 unique individuals);
(iii) deleted from the dataset all observations except the first one from each individual fish in the
validation sample; (iv) if the TMB algorithm converged, estimated the parameters of the vBGF and
GGF for each individual including those in the validation sample; (v) predicted the observations in
the test dataset (n between 522 and 541 from the 201 unique individuals); and (vi) estimated or
computed accuracy measures, such as R2 with respect to the 1 : 1 prediction-observation line, and
maximum error for the test sample. We repeated (ii)–(vi) five times and then computed the mean of
the accuracy measures for each vBGF and GGF model.

Following [7,13], we estimated the correlation between L∞ and k, and A and kG, to get insights into
potential processes driving the observed variation in growth. We also estimated the correlation between
L∞ and A at the individual level within populations when using the same models for the two growth
functions, since the values of L∞ and A are both estimates of asymptotic size.

Results are fully reproducible. Data and R code are at https://github.com/simonevincenzi/Growth_
Models.
3. Results
There were 60 individuals sampled three or more times in LIdri_MT, 7 in LIdri_RT, 90 in UIdri_MT and
513 in UVol_BT. Empirical growth trajectories showed substantial individual variation in growth rates
and size-at-age (figure 1).

Most models including either Cohort or interacting predictors never converged or converged only for
some of the five replicates, and we thus dropped them from the set of candidate models. A number of
different vBGF and GGF models had basically the same predictive accuracy, and their AICs computed
on the full dataset were fairly close as well (table 1). For 12 out of the 24 models, R2 with respect to
the 1 : 1 predicted-observed line was greater than 0.80 (table 1). The overall correlation (Pearson’s r)
between L∞ and A when using the same model (i.e. same predictors for the ‘equivalent’ parameters)
and pooling together all population-specific estimates was 0.51 (p < 0.01) (figure 2). However, within-
population correlations between L∞ and A were all non-significant.

The GGF model with Population as predictor for all three parameters was the model with the best AIC
computed on the whole dataset (ΔAIC with the second-best model = 39.08) (table 1). The equivalent-in-
predictors vBGF model showed estimates of asymptotic size that were similar only for UVol_BT to those
provided by the GGF (figure 3). In both vBGF and GGF models with Population as predictor for all three
parameters, L∞ and k, and A and kG at the individual level were positively correlated within populations
(figure 4).

GGF and vBGF predictions of sizes in the test datasets were remarkably similar to each other, with
Pearson’s correlation between GGF and vBGF predictions for the same models (i.e. same predictors
used in either growth function) on average greater than 0.99 (both prediction and parameter estimate
uncertainties are provided in the online resources associated with this paper).

However, despite the strong positive correlation between GGF and vBGF model predictions, for the
model with Species predicting A and L∞ for GGF and vBGF, and Population predicting the other two
parameters for either function (i.e. the best model in terms of average predictive accuracy on test
datasets for both the GGF and vBGF, table 1), the estimated A and L∞ were largely different from
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Figure 1. Growth trajectories of fish sampled more than once between 2004 and 2015 (only September samplings) in the
populations of LIdri_MT (n = 210 unique fish), UIdri_MT (n = 209), LIdri_RT (n = 17) and UVol_BT (n = 1323).
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each other for the population of LIdri_RT (GGF:Â [s.e.] = 721 [48] mm, vBGF: L̂1 [s.e.] = 338 [23] mm) and
similar for the other three populations (figure 5). In addition, for LIdri_RT, the correlation between A and
kG in the GGF was negative (r =−0.56, p < 0.01), and between L∞ and k in the vBGF was positive (r = 0.91,
p < 0.01).

Across models, a few individuals living in UVol_BT and UIdri_MT were consistently those with the
largest prediction errors. Those individuals had growth trajectories that were unusual with respect to the
common growth trajectories in their populations (figure 6). Both in the many trajectories that were
predicted accurately and in the few that were not, the growth trajectories estimated by the GGF and
vBGF models with the same predictors were basically indistinguishable (figure 7).
4. Discussion
We found that mixed-effects models based on either the von Bertalanffy or Gompertz growth functions
were able to largely capture the individual variation in growth among fish living in four distinct
freshwater salmonid populations. Among the models we tested, the predictive performances on test
datasets of the best von Bertalanffy and Gompertz mixed-effects models were largely equivalent,
although their estimates of asymptotic size were often substantially different. Finally, parameter
estimates for both growth functions point to strong maintenance of size hierarchies over time in each
of the four salmonid populations.
4.1. Growth processes
Individuals living in the same environment, and especially those of species with growth after sexual
maturity, often vary in their body growth rate and size-at-age. In the four trout populations that have
been investigated in this work, the size of the smallest age-1 fish was approximately 50% of the size
of the biggest age-1 fish. Growth trajectories in fish are often consistent through time, that is
individuals that are small early in life are likely to be among the smallest years later [13,67]. Vincenzi
et al. [13] showed that a positive correlation between asymptotic size and growth rate points to the
maintenance of size hierarchies through the lifetime of organisms, that is if individual a is bigger than
individual b at age t, individual a is likely to be bigger than individual b at time t + 1… t + n. For all
four populations, we found a positive correlation between asymptotic size and growth rate at the
individual level when using either growth function.



Table 1. Ranking of 24 models (12 for the von Bertalanffy growth function and 12 for the Gompertz growth function) according
to their mean R2 with respect to the 1 : 1 predicted-observed line over five random test datasets. R2 [s.d.] is the standard
deviation of the five R2 calculated for each model. In parentheses, the predictors for the growth function parameters, either
Species, Population (Pop) or Constant (i.e. no predictors, Const). Function is either the von Bertalanffy (vBGF) or the Gompertz
(GGF) growth function. The best model when using the whole dataset according to the Akaike information criterion (AIC) was
the Gompertz growth function model with A (Pop), kG (Pop), Ti (Pop).

model function R2 [mean] R2 [s.d.] AIC

L∞(Species), k(Pop), t0(Pop) vBGF 0.852 0.02 54717.75

L∞(Pop), k(Pop), t0(Pop) vBGF 0.851 0.02 54717.12

L∞(Pop), k(Pop), t0(Const) vBGF 0.847 0.02 54771.37

A(Species), kG(Pop), Ti(Pop) GGF 0.846 0.03 54749.06

L∞(Species), k(Pop), t0(Const) vBGF 0.846 0.02 54775.51

A(Pop), kG(Pop), Ti(Pop) GGF 0.846 0.03 54678.04

A(Pop), kG(Const), Ti(Pop) GGF 0.845 0.02 56017.61

A(Species), kG (Const), Ti(Pop) GGF 0.843 0.02 54768.57

L∞(Pop), k(Const), t0(Pop) vBGF 0.842 0.02 54942.05

L∞(Species), k(Const), t0(Pop) vBGF 0.838 0.02 54962.76

L∞(Const), k(Pop), t0(Pop) vBGF 0.810 0.02 55546.41

A(Const), kG(Pop), Ti(Pop) GGF 0.801 0.02 55647.87

A(Pop), kG(Pop), Ti(Const) GGF 0.770 0.03 56047.32

A(Species), kG(Pop), Ti(Const) GGF 0.768 0.03 56222.17

L∞(Pop), k(Const), Ti(Const) vBGF 0.714 0.04 56551.44

A(Pop), kG(Const), Ti(Const) GGF 0.712 0.04 56568.42

L∞(Species), k(Const), t0(Const) vBGF 0.708 0.04 56577.43

A(Species), kG(Const), Ti(Const) GGF 0.707 0.04 56596.06

L∞(Const), k(Const), Ti(Pop) vBGF 0.700 0.06 56767.01

A(Const), kG(Pop), Ti(Const) GGF 0.700 0.05 56843.89

A(Const), kG(Const), Ti(Pop) GGF 0.698 0.06 57097.36

L∞(Const), k(Const), t0(Const) vBGF 0.679 0.05 57567.55

A(Const), kG(Const), Ti(Const) GGF 0.675 0.05 57570.43

L∞(Const), k(Pop), t0(Const) vBGF 0.665 0.06 56896.74
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In freshwater trout, the primary type of intra-specific competition for resources seems to be
interference competition for space [7], probably due to their strong territoriality. In interference
competition, bigger individuals reduce the access to resources, such as space and food, of smaller
individuals, and may also live longer. High heritability of growth [32], maternal decisions on the
timing and location of spawning [68], and dominance established early in life [69] are all processes
that in combination or by themselves may explain the maintenance of size ranks throughout fish lifetime.
4.2. Prediction of growth trajectories
There is a rich literature on the comparison between growth function for prediction of unobserved data
and inference on growth processes in species [70–73]. When developing mathematical and statistical
models in biology and ecology, and in particular when those models are used for making predictions
of unobserved or future realizations of biological processes, we face trade-offs between model
complexity, interpretability of model parameters, ease of parameter estimation, and accuracy of
predictions. It is common for more complex models, either in number of predictors, how the
predictors enter the model (e.g. nonlinearly) or the algorithm used to estimate model parameters, to
provide higher accuracy (here, both the ability of the model to explain observed data and make
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correct predictions about future observables). However, higher accuracy may come at the expense of ease
of parameter estimation, interpretability of model predictors and parameters (i.e. to what degree the
model allows for understanding processes), and costs of collecting predictors data.
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The variation in growth and size that characterizes organisms can almost always be modelled
retrospectively, but forecasting size-at-age is much more challenging. The limited number of attempts
at predicting missing size observations or unobserved size-at-age and growth trajectories may also
depend on the intrinsic unpredictability of the growth of some organisms. For instance, in species
with environmental sexual determination and sexual dimorphism, such as eels [74], or when growth
is faster later in life and is strongly determined by the environment (e.g. ocean growth of anadromous
salmonids [75]), it may be impossible to accurately predict later portions of the growth trajectory
when only observations early in life are available.

We have shown that for the four salmonid populations that we used as a model system, the best
Gompertz and von Bertalanffy mixed-effects growth models allow one to use a single measurement
early in the life of individual fish to obtain accurate predictions of their size-at-age in the future. In
addition, the predictions made by the two models when using the same predictors for their
parameters were basically the same; choosing between the best models of the two growth functions
would have very few practical consequences for predictions of size-at-age of individuals. Some
inaccurate predictions deserve further investigations, although they are to be expected when
predicting the realizations of complex biological processes.

However, estimates of asymptotic size within populations were not correlated when estimated using
the same Gompertz and von Bertalanffy growth models. For instance, for one highly ranked model in
terms of AIC and predictive performance for both growth functions, the estimates of asymptotic size
for rainbow trout provided by the Gompertz model were on average more than two times bigger than
those provided by the von Bertalanffy model; in addition, for the same model, asymptotic size and
growth rate at the individual level for rainbow trout were negatively correlated when using the
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Gompertz model and positively correlated when using the von Bertalanffy model. Berkey [76] found that
growth curve parameters estimated using the empirical Bayes method (although the same can be said of
any estimation method for size-at-age models) are particularly sensitive to the endpoints of the growth
trajectories. In our study, the population of rainbow trout had the smaller and sparser data among all four
salmonid populations that we used in our system. However, wildly different combinations of parameters
of these growth functions can result in some cases in very similar growth trajectories over a restricted
time horizon [13]; this explains why the resulting predictions provided by the two models were
basically the same, even when the inference on growth processes coming from the analysis of
parameter estimates was different.

Although predictions from models of the two growth functions with similar performance on test
datasets were highly correlated and barely distinguishable, the two growth functions typically
provided different (in some cases, substantially different) estimates of asymptotic size. This suggests
that distribution of size-at-age can be a more informative and stable-across-models measure and
descriptor of growth than estimates of model parameters, especially when using or comparing
different growth functions. In addition, it is often challenging to accurately estimate asymptotic size
when only a few old individuals have been sampled. Other parametrizations of the growth equations
[77] may also be explored.

Shohoji et al. [78] found that the classification of individuals into homogeneous groups was necessary
to obtain accurate predictions of human lifetime growth. In our case, the classification either into
population or species was sufficient to develop models that provided overall excellent predictions of
the future growth of fish. When a single measurement early in life is sufficient to make accurate
predictions of future growth, we can hypothesize that either the intrinsic growth potential of the
individual, the environment experienced early in life, or a combination of the two largely determine
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the lifetime growth of individuals. Strong empirical evidence of early induced effects on later-in-life
growth rate, life-history traits and behaviour of organisms is rapidly building up in the literature [79,80].
5. Conclusion
A better understanding of the evolutionary, physiological and life-history determinants of the
differences in growth within and between individuals, populations, species and taxa will always be a
major problem in biology. In the context of species that grow after sexual maturity and when used for
predictive purposes, it appears that size-at-age mixed-effects growth models with time-invariant
predictors sit in a favourable place on the surface that trades off accuracy, complexity, and biological
interpretation of model parameters.
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