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ABSTRACT
Despite the widespread recognition of the importance of monitoring, only a few
studies have explored how estimates of vital rates and predictions of population
dynamics change with additional data collected along the monitoring program. We
investigate how estimates of survival and individual growth, along with predictions
about future population size, change with additional years of monitoring and data
collected, using as a model system freshwater populations of marble (Salmo marmor-
atus), rainbow (Oncorhynchus mykiss), and brown trout (Salmo trutta L.) living in
Western Slovenian streams. Fish were sampled twice a year between 2004 and 2015.
We found that in 3 out of 4 populations, a few years of data (3 or 4 sampling occa-
sions, between 300 and 500 tagged individuals for survival, 100–200 for growth)
provided the same estimates of average survival and growth as those obtained with
data from more than 15 sampling occasions, while the estimation of the range of sur-
vival (i.e., the difference, over all sampling occasions considered, between maximum
and minimum survival estimated in a sampling occasion) required more sampling
occasions (up to 22 for marble trout), with little reduction of uncertainty around the
point estimates. Predictions of mean density and variation in density over time did
not change with more data collected after the first 5 years (i.e., 10 sampling occa-
sions) and overall were within 10% of the observed mean and variation in density
over the whole monitoring program.
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1 | INTRODUCTION

The estimation of vital rates and life-history traits and how
they vary with habitat and population factors are crucial both
for our understanding of population dynamics, risk of extinc-
tion, and evolution of traits in natural populations, and for
informing management strategies in conservation programs
(Frederiksen, Lebreton, Pradel, Choquet, & Gimenez, 2014;
Letcher et al., 2015; Smallegange & Coulson, 2013). To
understand how variation in vital rates and life histories of
organisms among individuals and through time emerge and

how that variation contributes to population dynamics and
risk of extinction, we typically need long-term monitoring stud-
ies that include contrasting environmental conditions (Elliott,
1994), longitudinal data (Thomson, Cooch, & Conroy, 2009),
and statistical models that can tease apart environmental and
biological contributions to the observed temporal (and spatial,
in case of meta-populations or multiple populations) variation
in vital rates, life histories, and population dynamics (Letcher et
al., 2015).

When the goal is informing management strategies for
the conservation of species, monitoring is the process of col-
lecting information about state variables (e.g., abundance,
size, and vital rates) at different points in time and space for
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detecting changes in those variables through time, over
space, and among individuals (Gerber, Beger, McCarthy, &
Possingham, 2005). The purpose of a scientific investigation
should drive model formulation and the type and amount of
data collected (Elderd & Miller, 2016). It follows that defin-
ing “long-term” for monitoring is always context-dependent
and often challenging, since how long the monitoring of nat-
ural populations must be carried out depends on the genera-
tion time and longevity of the organisms, the characteristics
of the environment in which the species lives, and the goals
of the monitoring program. For conservation programs, suf-
ficient knowledge to address most practical problems related
to conservation and management of endangered species will
usually be obtained within a few years or generations of the
monitored species, after which the cost of monitoring should
begin outweighing the expected benefits with regard to man-
agement strategies and overall decision making (Possingham,
Fuller, & Joseph, 2012).

Within a population, habitat factors—both extrinsic
(e.g., weather, food) and intrinsic (e.g., population density,
type of competition among organisms)—and their interac-
tion, determine a large part of the temporal variation in vital
rates, in recruitment, and population size, age-, and size-
structure (Jonsson & Jonsson, 2011). If the fundamental
parameters of an ecological system are constant, that is, if
habitat factors vary little through either time or space, then we
rarely need long-term monitoring for learning in the context
of conservation biology (Possingham et al., 2012). On the
other hand, highly stochastic environments such as those char-
acterized by the occurrence of extreme events (Vincenzi,
2014) require decades-long monitoring to capture the effects
of extreme events on vital rates, life histories, population
dynamics, and risk of population extinction (Vincenzi, Man-
gel, Jesensek, Garza, & Crivelli, 2017). Besides, serendipitous
findings and an appreciation of the effects of subtle variation
in life histories in natural populations of long-lived species on
individual and population processes may only come after
many years of monitoring, although one might expect new
knowledge to be gained in ever decreasing increments
(Possingham et al., 2012). Lastly, especially for small popula-
tions, many years of data may be necessary to reduce the
uncertainty around the estimation of vital rates due to sample
size effects (Reynolds, 2012).

Only a few studies have investigated how estimates of
vital rates and predictions of population dynamics change with
additional data collected through the monitoring program, and
what are the minimum or—when factoring in the costs in
money and time of monitoring— optimal years of monitoring
or amount of data collected for estimating vital rates and pre-
dicting population dynamics (Caughlan & Oakley, 2001). For
instance, Gerber et al. (2005) studied how long we should
monitor the recovery of an over-fished stock to determine the
fraction of that stock to reserve; they found that the optimal
monitoring time frame is rarely more than 5 years. After

5 years, the expected benefit of reduced uncertainty about the
parameters of the system was negligible compared to the
expected gain from earlier exploitation.

In the present study, we investigate how estimates of sur-
vival and body growth, along with predictions about future
population size, change with additional years of data collected
from monitoring programs. We use as a model system fresh-
water populations of marble (Salmo marmoratus), rainbow
(Oncorhynchus mykiss), and brown trout (Salmo trutta L.) liv-
ing in Western Slovenian streams. These trout populations
have been monitored (tag-recapture) since 2004 as part of the
ongoing conservation program for the endangered marble
trout (Crivelli, Poizat, Berrebi, Jesensek, & Rubin, 2000).

We estimated average and time-specific survival proba-
bilities and average growth trajectories for each year of sam-
pling, that is, with cumulative tag-recapture data up to 2006,
2007, and so on up to 2014, and then used models of popu-
lation dynamics to study how predictions of mean popula-
tion size and its temporal variation change with additional
years of sampling data. Due to the similarity of the moni-
tored species (all belonging to the family Salmonidae) and
their restricted geography (Western Slovenia), our results are
more descriptive than prescriptive. We encourage the under-
taking of similar analyses by other conservation scientists and
practitioners, with the objective of providing general guide-
lines on the minimum duration of monitoring programs,
amount of data collected, or individuals tagged and recaptured
for goals ranging from the estimation of vital rates to predic-
tion of population dynamics and risk of extinction.

2 | MATERIAL AND METHODS

2.1 | Study area and species description

We estimated survival probabilities and growth trajectories,
and predicted population dynamics for the marble trout
(Salmo marmoratus) populations of Lower Idrijca [LIdri_MT]
and Upper Idrijca [UIdri_MT] (Vincenzi, Mangel, et al.,
2016), rainbow trout (Oncorhynchus mykiss) population of
Lower Idrijca [LIdri_RT] (Vincenzi et al., 2019), and brown
trout (Salmo trutta L.) population of Upper Volaja
[UVol_BT] (Vincenzi, Jesenšek, & Crivelli, 2018). In LIdri,
marble trout [LIdri_MT] live in sympatry with rainbow trout
[LIdri_RT] (Vincenzi, Crivelli, Jeseňsek, Rossi, & De Leo,
2011; Vincenzi et al., 2019). Both UIdri_MT and UVol_BT
live in allopatry. LIdri_RT was created in the 1960s (Vincenzi
et al., 2019) and UVol_BT in the 1920s (Vincenzi et al.,
2018) by stocking rainbow and brown trout, respectively.
Both populations have been self-sustaining since their
creation.

Marble trout is a freshwater salmonid fish of high con-
servation concern, due to its restricted geographical distribu-
tion and the risk of hybridization with alien brown trout.
Only eight natural and two re-introduced populations of
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genetically pure marble trout remain, all in streams in the
river basins of Soca, Baca, and Idrijca in Slovenia, persisting
above barriers that have prevented the upstream movement
of brown trout or marble-brown trout hybrids (Vincenzi,
Mangel, et al., 2016). Marble trout spawn in November–
December. Marble trout females typically reproduce at age 3
and older, and at a minimum size of 200 mm, and males age
2 and older.

Freshwater resident brown trout live in well-oxygenated
waters. Depending on growth and life histories, resident
brown trout achieve sexual maturity anywhere from 1 to
10 years. In the Northern Hemisphere, the usual time for
breeding in most populations is between November and
January and brown trout may spawn over several years.

Rainbow trout is a north Pacific species (Gall & Cran-
dell, 1992). Rainbow trout in the Adriatic basin of Slovenia
typically start spawning at age 1 (current authors, unpub-
lished data), spawn over several years, and grow much faster
in size than brown and marble trout.

2.2 | Sampling

Populations were sampled bi-annually in June and
September. The first sampling for LIdri_MT, LIdri_RT, and
UIdri_MT was in June 2004 and in September 2004 for
UVol_BT. Sampling protocols are described in greater
details in Vincenzi, Mangel, et al., 2016) and Vincenzi et al.
(2018). If captured fish had length L > 115 mm, and had
not been previously tagged or had lost a previously applied
tag, they received a Carlin tag (Carlin, 1955), and age was
determined by reading scales. Fish are 0+ (juveniles) in the
first calendar year of life, 1+ in the second year and so on.
Sub-yearlings of marble, rainbow, and brown trout are smal-
ler than 115 mm in June and September, so fish were tagged
when at least aged 1+. The adipose fin was also removed
from all fish captured for the first time (starting at age 0+ in
September), including those not tagged due to small size at
age 1+. Therefore, fish with intact adipose fin were not sam-
pled at previous sampling occasions at age 0+ or 1 + .

We estimated density of fish older than 0+ using a two-
pass removal protocol (Carle & Strub, 1978) as implemented
in the (R Development Core Team, 2014) package FSA
(Ogle, 2015). Total stream surface of the monitored area
(1,084, 1,663 and 746.27 m2 for LIdri, UIdri and UVol,
respectively) was used for the estimation of fish density (in
fish ha−1).

2.3 | Statistical analysis of survival and growth

Our goal was to investigate how estimates of (a) average and
time-specific survival probabilities and (b) average body
growth and (c) predictions of population dynamics change
with each additional year of sampling data, where Yf is the
last year of monitoring/data collection in September. As sim-
ulations of population dynamics often prevent the use of

null-hypothesis testing, and multiple comparisons increase
the “researcher degrees of freedom,” including the choice of
convenient hypotheses to test (Gelman & Loken, 2013), we
present and discuss our results on variation in survival,
growth and population dynamics from a qualitative point of
view, that is, without formal null-hypothesis testing.

For each population, the first models were estimated
with Yf = 2005, that is, using data up to from September
2005. For the analysis of survival, we used both June and
September data, while for the analysis of growth we used
only September data.

2.3.1 | Survival

Two relevant probabilities can be estimated from a capture
history matrix: ϕ, the probability of apparent survival, and p,
the probability that an individual is captured given that it is
alive (Thomson et al., 2009). We used the Cormack–Jolly–
Seber (CJS) model as a starting point for the analyses
(Thomson et al., 2009). We tested the goodness-of-fit of the
CJS model with the program Release (Burnham, Anderson,
White, Brownie, & Pollock, 1987). We modeled the seasonal
effect (Season) as a simplification of full-time variation, by
dividing the year into two periods: June to September (Sum-
mer), and September to June of the following year (Winter).
Since length of the two intervals (Summer and Winter) was
different (3 and 9 months), we estimated probability of appar-
ent survival on an annual scale.

To compare model results when different data were used,
models tested included either only the constant term (i.e.,
average apparent survival over all the sampling intervals) or
sampling occasion. For probability of capture p, following
Vincenzi, Mangel, et al., 2016) we tested models with either
Age, Season, Cohort or sampling occasion as predictors,
along with the capture model with no predictors (i.e., constant
probability of capture).

For each population, we used Akaike Information Crite-
rion (AIC) for model selection (Akaike, 1974). For each Yf,
we obtained average survival probabilities over the whole
sampling period (2004 to Yf) and for each sampling interval
from the respective best models of (a) average over the
whole sampling period 2004 to Yf and (b) for each sampling
interval from 2004 to Yf. We carried out the analysis of sur-
vival using the package marked (Laake, Johnson, & Conn,
2013) for R (R Development Core Team, 2014).

2.3.2 | Growth

The standard von Bertalanffy Growth Function (vBGF; von
Bertalanffy, 1957) is

L tð Þ = L∞ 1− e− k t− t0ð Þ
� �

ð1Þ

where L∞ is the asymptotic size, k is a coefficient of growth
(in time−1) and t0 is the (hypothetical) age at which length is
equal to 0.
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In the vast majority of applications of the vBGF, L∞, k
and t0 have been estimated at the population level starting
from cross-sectional data, without accounting for individual
heterogeneity in growth due to genetic, environmental and
stochastic factors. However, when data include measure-
ments on individuals that have been sampled multiple times,
failing to account for individual variation in growth may
lead to biased estimations of asymptotic size and mean
length-at-age (Vincenzi, Crivelli, Munch, Skaug, & Mangel,
2016; Vincenzi, Mangel, et al., 2014).

In the present study, we used the formulation of the
vBGF specific for longitudinal data of Vincenzi, Mangel, et
al. (2014), in which L∞ and k may be allowed to be a func-
tion of shared predictors and individual random effects.
However, in this study, we limited our analyses to models
including only the intercept (i.e., the overall mean) and indi-
vidual random effects, that is, we did not include group
effects (e.g., sex, cohort). In the estimation procedure, we
used a log-link function for k and L∞, since both parameters
must be non-negative. We set:

log k ijð Þ� �
= α0 + σuuij

log L ijð Þ
∞

� �
= β0 + σvvij

t ijð Þ
0 = γ0

8>><
>>:

ð2Þ

where u�N(0, 1) and v�N(0, 1) are the standardized indi-
vidual random effects, σu and σv are the standard deviations
of the statistical distributions of the random effects, i is the
individual. Since the growth model operates on an annual
time scale (i.e., the use of multiple data points per individual
within a year would require a different growth model) and
more data on tagged fish were generally available in
September of each year, we used September data for model-
ing lifetime growth.

Models were fitted with the Automatic Differentiation
Model Builder (ADMB), an open-source statistical software
package for fitting nonlinear statistical models (Fournier et
al., 2012). ADMB can fit generic random-effects models
(module ADMB-RE) using an Empirical Bayes approach
using the Laplace approximation (Skaug & Fournier, 2006).

We also tested whether there were noticeable differences
in vBGF models when estimating model parameters using a
standard nonlinear regression fitting routine with no random
effects (nls function in R) or using ADMB-RE. We carried
out this analysis to determine whether the fitting of a
random-effects model is recommended even when only
mean growth trajectories at the population level are needed,
thus in the case when the fitting of a standard non-linear
regression model may represent a theoretically viable
procedure.

2.4 | Population dynamics

We simulated population dynamics of marble, rainbow and
brown trout using individual-based models that include the

most critical vital rates for the population dynamics for salmo-
nids, that is, reproduction, juvenile survival (from 0+ to 1+),
and survival of fish older than 0+.

Previous studies on the same marble (Vincenzi, Mangel,
et al., 2016)), rainbow (Vincenzi et al., 2019), and brown
trout (Vincenzi et al., 2018) populations have found that
recruitment in all these populations was driving most of the
variation in population density of fish older than juveniles.
Investigations in fish farms have suggested minimum size
for gonad development and reproduction in marble trout
(~200 mm) and rainbow trout (~150 mm). However, pedi-
gree reconstruction in four marble trout populations, includ-
ing LIdri_MT and UIdri_MT (Vincenzi et al., 2017;
Vincenzi et al., 2019), and in the rainbow trout population of
Lower Idrijca (LIdri_RT) (Vincenzi et al., 2019), showed
that marble and rainbow trout can occasionally reproduce at
smaller sizes, and reproductive success as number of juve-
niles produced appears to be independent of parents' size.
Thus, for simulating recruitment (i.e., density of 0+ in
September) in the model of population dynamics, we did not
use the model of growth and the model of size-dependent
fecundity. Instead, we used the stock-recruitment General-
ized Additive Models (GAM, Wood, 2006) of Vincenzi,
Mangel, et al., 2016) for marble and rainbow trout and of
Vincenzi et al. (2018) for brown trout. These GAM models
are in the form:

R tð Þ = Pop + s Ds t− 1ð Þð Þ ð3Þ
where R(t) is recruitment at year t, Pop is the salmonid popu-
lation, Ds(t − 1) is the density of potential spawners at year
t − 1, and s is the nonlinear function linking spawners to
recruitment.

Early survival, and in particular the first overwinter sur-
vival, is the major bottleneck for population size in fresh-
water salmonids (Vincenzi, Satterthwaite, & Mangel,
2012). Many years of data, and possibly data from multiple
populations spanning a wide range of densities (Imre,
Grant, & Cunjak, 2005), are necessary to estimate density-
dependent survival early in life (from 0+ to 1+). In our
model of population dynamics, we used for marble trout
the model of density-dependent early survival developed in
Vincenzi, Mangel, et al., 2016). For both marble trout popula-
tions, density-dependent survival early in life σ0 − 1was
modeled as:

log σ0− 1ð Þ = α + β log D ≥ 1 +ð Þ ð4Þ
where D≥1+is the density of fish of age 1+ and older when
juveniles are in the first year of their life.

For rainbow and brown trout, we randomly (i.e., we did
not model autocorrelation) drew at each year of the simula-
tion of population dynamics a value from the discrete set of
estimated early survival probabilities reported in (Vincenzi
et al., 2019) for rainbow trout and in Vincenzi et al. (2018)
for brown trout.
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For modeling survival of fish older than juveniles, we
used the population-specific, time-varying survival probabili-
ties estimated in this study. For each population, we simulated
100 years of population dynamics using survival probabilities
estimated with final year of sampling Yf = 2006, 2008, 2010,
2012 or 2014. At each time step of the simulation of popula-
tion dynamics, a survival probability was randomly drawn
from the logit distribution of estimated survival probabilities,
and Bernoulli trials were used to determine whether an indi-
vidual survived or not. Since UVol_BT is a source-sink sys-
tem (Vincenzi et al., 2018), we also modeled the influx of
brown trout from the source population by doubling the num-
ber of fish in each cohort after the first overwinter survival
(Vincenzi et al., 2018).

For each replicate, we recorded (a) mean density of
fish older than 0+ over simulation time, and (b) the coeffi-
cient of variation (CV) of population density of fish older
than 0+ over simulation time. Since freshwater salmonid
populations living in Western Slovenia are at contempo-
rary risk of extinction only after the occurrence of extreme
climate events such as flash floods or debris flows (Vincenzi
et al., 2017; Vincenzi et al., 2018), we did not include popu-
lation extinction as response variable, as the risk of

population extinction would almost entirely depend on the
modeled intensity and frequency of extreme events (Vincenzi
et al., 2008).

For an ensemble of realizations (100 replicates for a
fixed set of parameters), we computed: (a) mean and 2.5 and
97.5% quantiles of mean density of fish older than 0+ over
simulation time; (b) mean and 2.5 and 97.5% quantiles of
CV of density of fish older than 0+ over simulation time.

3 | RESULTS

Results are fully reproducible. Data and R code are at
https://github.com/simonevincenzi/Limit_sampling.

Estimates of population densities were variable through-
out the time in all four trout populations, with the highest
coefficient of variation (CV) for LIdri_RT (0.60) and the
lowest for UVol_BT (0.17) (Figure 1).

Previous work has found no or minor effects of popula-
tion density, water temperature, body size or sex on sur-
vival in marble trout (Vincenzi, Mangel, et al., 2016). For
Yf > 2006 (i.e., after 6 sampling occasions for marble and
rainbow trout, and 5 for brown trout), average survival was
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FIGURE 1 Estimated density from observation data over time ± 95% confidence intervals (individuals older than 0+ in September of each year) of marble
trout in lower (LIdri_MT), (a) and upper (UIdri_MT), (b) Idrijca, rainbow trout in lower Idrijca (LIdri_RT), (c) and brown trout in upper Volaja (UVol_BT),
(d). Coefficients of variation of point estimates of population density between 2004 and 2015 were 0.60 (LIdri_RT), 0.17 (UVol_BT), 0.35 (UIdri_MT) and
0.33 (LIdri_RT). Scales on the y-axis are different as estimated densities of rainbow trout and brown trout are much lower and higher, respectively, than those
of marble trout
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constant for LIdri_MT, UIdri_MT, and UVol_BT (Figure 2).
For LIdri_RT, average survival was constant for Yf > 2009
(i.e., after 12 sampling occasions). The distance between point
estimates of maximum and minimum time-varying survival
probabilities increased through time, but the 95% CI of maxi-
mum and minimum survival probabilities overlapped for each
Yf, except in UVol_BT (Figure 2).

von Bertalanffy growth function models fitted with stan-
dard nonlinear regression (i.e., without accounting for indi-
vidual variability in growth) show estimates of asymptotic
size that are typically greater than those obtained with
random-effects models (Figure 3). In LIdri_MT, the greater
asymptotic size when estimating model parameters without
using random-effects was caused by long-lived individ-
uals that were bigger-at-age than shorter-lived individuals
(Figure 3). In LIdri_RT and UVol_BT, the estimates of
asymptotic size when using models with or without ran-
dom effects were basically the same at any point in time
(Figure 3). The estimates of asymptotic size when using
the random-effects vBGF did not change with Yf, when Yf
was >2005 (Figure 3). For all populations, estimates of
parameters in vBGF models with individual random-
effects with Yf = 2006 or 2014 described the same aver-
age growth trajectories (Figure 4).

Using time-varying fish survival probabilities estimated
at different Yf had little effects on predictions of mean

population density (Figure 5) and on its coefficient of varia-
tion (Figure 6). The simulated mean densities were within
10% of the observed mean densities for all trout populations
for all Yf (Figure 5). The only exception was UVol_BT, for
which the simulated mean densities with Yf = 2006 were
20% lower than the observed mean density over 2004–2015.
CV of density from simulations was lower than the observed
CV over 2004–2015 for LIdri_MT, and similar to the
observed CV for the other trout populations (Figure 6).

4 | DISCUSSION

Effective conservation of species requires the estimation of
variation in vital rates and life-history traits and an under-
standing of the determinants of the observed variation. Then,
vital rates and life histories estimated from focal data, find-
ings from published literature, and controlled experiments
should be integrated into models of population dynamics for
prediction and evaluation of scenarios of population dynam-
ics, evolution of traits, and management strategies (Elderd &
Miller, 2016; Evans, Holsinger, & Menges, 2010). However,
how long the monitoring programs informing those models
should go on is often unclear.

In the present study, we investigated how estimates of
vital rates and predictions of population dynamics change
along the monitoring program with the collection of more
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data. We found that in 3 out of 4 populations, a few years of
data (3 or 4 sampling occasions, close to the generation time
of marble trout and ~1.5 times the generation time of rain-
bow and brown trout) provided the same estimates of aver-
age survival and growth as those obtained by more than 15
sampling occasions, while the estimation of the range of sur-
vival probabilities (i.e., ideally the distribution of survival
probabilities over time, more often the difference between
maximum and minimum survival) required, as expected,
more sampling occasions (up to 22 for marble trout), with
little reduction of uncertainty around the point estimates.
Predictions of mean density and variation in density over
time did not change with more data after the first 5 years
(i.e., 10 sampling occasions) and were within 10% of the
observed mean and variation in density over 11 years.

4.1 | Survival

Previous work has found cohort and time effects on the sur-
vival probabilities of freshwater salmonids living in Western
Slovenian streams. As neither water temperature nor population
density seemed to explain variation in survival, the observed
variation might be ascribed to variation in flow rates, trophic
conditions or other unobserved or unmeasured properties of the

environment Vincenzi, Mangel, et al., 2016). Although due to
the effects of sample size and of a fairly stable environment in
Lower Idrijca, Upper Idrijca and Upper Volaja we expected the
marginal effect of additional data to be increasingly smaller
along the monitoring program, we found that even after 6–8
sampling occasions the estimates of average survival (both
point estimates and confidence intervals) did not change
with additional years of data. The only exception was the
rainbow trout population of Lower Idrijca—the smallest of
the four salmonid populations—, for which the estimates of
average survival remained stable over time only after using
data from 12 sampling occasions. In total, capture-
recapture data from between 300 and 500 tagged fish were
sufficient for stable estimates of average survival probabili-
ties. Since newly tagged fish entered the data set at each
sampling occasion, further studies will investigate how
many complete life histories are needed to obtain stable
estimates of average survival probabilities.

Due to small population sizes, the CIs of the estimates of
maximum and minimum survival over a sampling interval
overlapped in all populations except the brown trout popula-
tion of Upper Volaja. In addition, while maximum survival
is expected to have a ceiling determined by habitat condi-
tions and the ecology of the species that can be estimated
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with a few years of data, the estimation of very low survival
probabilities such as those caused by flash floods and debris
flows Vincenzi, Mangel, et al., 2016) may require decades-
long monitoring programs.

In our analyses, we imposed that data collection for all
populations started on the first sampling occasion of the real
monitoring program for the four trout populations. Other ana-
lyses could be run by maintaining the same length of the mon-
itoring program (say, four sampling occasion), but setting an
arbitrary sampling occasion as the first one (say, 2010 instead
of 2004). For the two trout populations of Lower Idrijca, it
might appear that by setting the first sampling occasions later
on we would quickly capture the biggest difference between
maximum and minimum survival probabilities. However,
probability of capture and probability of survival at each sam-
pling occasion are jointly estimated using all data available,
and the presence of many degrees of freedom might bias the
comparison of results when choosing different starting sam-
pling occasions for the analyses. Regarding the former, the
highest point estimate for maximum survival in a sampling
occasion in Upper Volaja is larger with the end of sampling in
2009 than in 2010, although intuitively we would not expect
the highest point estimate for maximum survival in a sampling
occasion to ever decrease with more sampling occasions. For
the latter, among others, sampling becomes more efficient

over time as technicians and field workers “reliably locate”
hiding spots and pools, and the probability of losing tags
decreases with more practice in setting them.

The rainbow and marble trout populations showed
greater fluctuation in population size than the brown trout
population. Theoretically, and apart from the effects of
extreme events, we would expect to need fewer sampling
occasions to estimate the maximum difference between max-
imum and minimum survival in a sampling occasion in
populations with smaller fluctuations in population size. Our
results may appear to support the hypothesis; the rainbow
trout population showed both the largest fluctuations in pop-
ulation size and the longest time to reach a semi-stable dis-
tance between maximum and minimum survival in a
sampling occasion. However, the rainbow trout population
is also that with the smallest numbers—which are expected
to lead to a large coefficient of variation in population
size—and smallest mean survival, thus, making it difficult to
assume causality between non-stationarity of population size
and time to reach a semi-stable distance between maximum
and minimum survival in a sampling occasion.

4.2 | Growth

Estimates of body growth are fundamental for management.
For instance, age-structured stock assessment methods are

FIGURE 4 Average growth trajectories for body length estimated using the random-effects von Bertalanffy growth function models using data collected up
to 2006 (black) and up to 2014 (gray) for marble trout in lower (LIdri_MT), (a) and upper Idrijca (UIdri_MT), (b), rainbow trout in lower Idrijca (LIdri_RT),
(c), and brown trout in upper Volaja (UVol_BT), (d)
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based on sizes-at-age that are often derived from parame-
ters of the von Bertalanffy growth model for that species
(Katsanevakis & Maravelias, 2008). Size-at-age, which is the
easiest-to-observe realization of the growth process, often var-
ies considerably among individuals living in the same envi-
ronment. In the four trout populations, the size of the smallest
age-1 fish was ~50% of the size of the biggest age-1 fish.

Longitudinal data (e.g., tag-recapture) and random-
effects models greatly facilitate the estimation of individual
and group (i.e., sex, year-of-birth) variation in growth. In
particular, for the two marble trout populations, we found
that standard nonlinear regression (i.e., models without
random-effects) provided estimates of asymptotic size that
were consistently larger (up to Yf = 2014 for marble trout in
Lower Idrijca and up to Yf = 2012, ~800 tagged fish, for
marble trout in Upper Idrijca) than those provided by the
random-effects vBGF models.

In marble trout, the primary type of intra-specific compe-
tition for resources seems to be interference competition for
space (Vincenzi, Crivelli, et al., 2016 ), probably due to their
high territoriality. In interference competition, bigger indi-
viduals (in the case of marble trout, those with access to bet-
ter sites) reduce the access to resources, such as space and
food, of smaller individuals, and may also live longer than
smaller individuals. On the other hand, the estimates of

asymptotic size using the random-effects vBGF models were
little affected by the use of more data when 100 to 200 indi-
viduals of various ages were already included in the data set.
Since the vBGF parameters can seldom be interpreted sepa-
rately (Vincenzi, Mangel, et al., 2014), the analysis of the
whole growth trajectories is crucial for understanding varia-
tion in growth. Also when examining whole growth trajecto-
ries, we found that the growth trajectories predicted by the
random-effects vBGF models were almost identical when
using data from 3 (100–200 individuals of various ages) or
11 years of monitoring.

4.3 | Population dynamics

Evans et al. (2010) found that parameter uncertainty was
responsible for 50–64% of the variation in the stochastic
growth rate of simulated populations of Florida scrub mint,
despite data used to estimate vital rates was long term
(20 years) and involved thousands of individuals across multi-
ple populations. In our model of population dynamics, there
were small differences between predicted densities when
using data from 3 (6 sampling occasions) or 11 (22 sampling
occasions); the only exception was the brown trout population
of Upper Volaja. The low mean population density predicted
for Upper Volaja when using data from 5 sampling occasions
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was due to low probabilities of survival in Upper Volaja
between 2004 and 2007, whose inclusion in the model of
population dynamics led to predictions of mean population
size much lower than those provided by models parameter-
ized with more data and more representative environmental
conditions. As described in Vincenzi et al. (2018), high
population densities in Upper Volaja 2004–2005, fast
growth of fish born in early 2000s, and lower survival in
the first years of sampling point to very low population
densities in late 1990s and early 2000s, probably a conse-
quence of an extreme climate event (e.g., flash flood or
debris flow) that caused high fish mortalities. Thus, as in
the case of the brown trout population of Upper Volaja,
when the estimates of survival probabilities are not repre-
sentative of the conditions typically experienced by indi-
viduals, model predictions can be inaccurate.

In our analyses, we only set survival probabilities as dif-
ferent among models for the same population. In our model
of population dynamics, parameter uncertainty can be inter-
preted as a combination of both statistical uncertainty, which
inevitably comes from parameter estimation, and process
variability—i.e., the random draw at any time step of a sur-
vival probability can also represent variation in exogenous
processes that determine variation in vital rates, and recruit-
ment and early survival are both density-dependent.

However, the parameters with the most available data
are not necessarily the parameters that have the biggest
effect on model predictions. In some cases, empirical data
may be lacking for parameters that can substantially alter
model predictions. In our study, we were able to include a
model of density-dependent early survival only in the
models of population dynamics for the two populations of
marble trout, since even more than 10 years of data were
not sufficient to estimate parameters of similar models for
brown trout and rainbow trout. Since in small populations
early survival may almost entirely depend on environmen-
tal variables such as water temperature, trophic conditions,
and water flow—whose year-to-year variation are intrinsi-
cally tough to predict—data on density and models of
density-dependent survival may reach the limits of their (little)
explanatory power after just a few years of monitoring. How-
ever, randomly drawing an early survival probability at each
time step from the set of estimated probabilities did not seem
to affect the accuracy of the predictions of mean population
density. Then, for small populations living in highly variable
environments, process variability of extreme events, such as
stochastic variation in their timing and intensity, is often the
major determinants of population dynamics (Vincenzi, Cri-
velli, et al., 2014). For instance, Evans et al. (2010) found
that much of the variability in the population growth rate of
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simulated populations of Florida scrub mint resulted from
process variability, such as random variation in fire history,
year variation and demographic fates among replicates of
population growth. Decades-long monitoring is needed to
capture the statistical properties of extreme events and of
their effects on vital rates and life histories. However, this
additional data would rarely reduce the uncertainty of “useful”
predictions of population dynamics for conservation, since
those predictions heavily depend on the actual realizations of
stochastic processes (i.e., a flood that wipes out a fish popula-
tion might have a recurrence interval of 50 years, but in an
interval of n years either occur or does not occur).

Models of recruitment dynamics were able to explain only
a small part of the variability in recruitment (i.e., <30%). The
relative balance between spawning stock size and environ-
mental factors as determining recruitment in freshwater sal-
monids is still debated and probably context-specific (Einum,
2005; Nicola, Almodóvar, Jonsson, & Elvira, 2008). Recruit-
ment in marble, rainbow and brown trout was highly variable
over time; the marble and rainbow trout populations of Lower
and Upper Idrijca were recruitment-driven, as indicated by the
strong 1-year lagged correlation between density of older than
newborn trout and density of newborns (Vincenzi, Mangel, et
al., 2016; Vincenzi et al., 2019). In Upper Volaja, the absence
of a correlation between density of older than newborn trout
and density of newborns was caused by immigration of 0+
and 1+ from the source population (Vincenzi et al., 2018).
Despite the uncertainty in recruitment models, the predictions
of mean population density and variation of density over time
were accurate.

ACKNOWLEDGEMENTS

We thank the employees and members of the Tolmin
Angling Association (Slovenia) for carrying out fieldwork
since 1993. Simone Vincenzi first proposed the idea behind
the paper at a dinner with Ryan Chisholm at the 2013 Soci-
ety for Industrial and Applied Mathematics in San Diego,
and then started the analyses during a seminar tour in South
America at the end of 2016.

Authors contributions

SV conceived the ideas and designed methodology; AJC con-
ceived and run the Marble trout Project and AJC and DJ col-
lected the data; SV analyzed the data; SV and AJC led the
writing of the manuscript. All authors gave final approval for
publication.

DATA STATEMENT

Data and R code: https://github.com/simonevincenzi/Limit_
sampling.

The file Readme.md in the repository describes each step
of the reproducible analyses.

REFERENCES

Akaike, H. A. I. (1974). A new look at the statistical model identification. IEEE
Trans Automat Contr AC, 19, 716–723.

Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C., & Pollock, K. H.
(1987). Design and analysis methods for fish survival experiments based on
release-recapture. In American Fisheries Society Monograph 5. Bethesda,
Maryland: American Fisheries Society.

Carle, F. L., & Strub, M. R. (1978). A new method for estimating population size
from removal data. Biometrics, 34, 621. https://doi.org/10.2307/2530381

Carlin, B. (1955). Tagging of salmon smolts in the river lagan. Report: Institute
of Fresh-water Research, Drottningholm, 36, 57–74.

Caughlan, L., & Oakley, K. L. (2001). Cost considerations for long-term ecologi-
cal monitoring. Ecological Indicators, 1, 123–134. https://doi.org/10.1016/
S1470-160X(01)00015-2

Crivelli, A. J., Poizat, G., Berrebi, P., Jesensek, D., & Rubin, J. F. (2000). Con-
servation biology applied to fish: The example of a project for rehabilitating
the marble trout (Salmo marmoratus) in Slovenia. Cybium: Revue Internatio-
nale d’Ichtyologie, 24, 211–230.

Einum, S. (2005). Salmonid population dynamics: Stability under weak density
dependence? Oikos, 110, 630–633.

Elderd, B. D., & Miller, T. E. X. (2016). Quantifying demographic uncertainty:
Bayesian methods for integral projection models. Ecological Monographs,
86, 125–144. https://doi.org/10.1890/15-1526.1

Elliott, J. M. (1994). Quantitative ecology and the Brown trout. Oxford,
England: Oxford University Press.

Evans, M. E. K., Holsinger, K. E., & Menges, E. S. (2010). Fire, vital rate, and
population viability: A hierarchical Bayesian analysis of the endangered
Florida scrub mint. Ecological Monographs, 80, 627–649. https://doi.org/10.
1890/09-1758.1

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder,
M. N., … Sibert, J. (2012). AD model builder: Using automatic differentia-
tion for statistical inference of highly parameterized complex nonlinear
models. Optimization Methods and Software, 27, 233–249. https://doi.
org/10.1080/10556788.2011.597854

Frederiksen, M., Lebreton, J. D., Pradel, R., Choquet, R., & Gimenez, O. (2014).
Identifying links between vital rates and environment: A toolbox for the
applied ecologist. Journal of Applied Ecology, 51, 71–81. https://doi.org/10.
1111/1365-2664.12172

Gall, G. A. E., & Crandell, P. A. (1992). The rainbow trout. Aquaculture,
100, 1–10.

Gelman A, Loken E (2013) The garden of forking paths: Why multiple compari-
sons can be a problem, even when there is no “fishing expedition” or “p-
hacking” and the research hypothesis was posited ahead of time. http://www.
stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf 1–17.

Gerber, L. R., Beger, M., McCarthy, M. A., & Possingham, H. P. (2005). A the-
ory for optimal monitoring of marine reserves. Ecology Letters, 8, 829–837.
https://doi.org/10.1111/j.1461-0248.2005.00784.x

Imre, I., Grant, J., & Cunjak, R. (2005). Density-dependent growth of young-of-
the-year Atlantic salmon Salmo salar in catamaran brook, New Brunswick.
The Journal of Animal Ecology, 74, 508–516. https://doi.org/10.1111/j.
1365-2656.2005.00949.x

Jonsson, B., & Jonsson, N. (2011). Ecology of Atlantic salmon and brown trout:
Habitat as a template for life histories. Fish and fisheries series, (Vol. 33).
New York, NY: Springer.

Katsanevakis, S., & Maravelias, C. D. (2008). Modelling fish growth: Multi-
model inference as a better alternative to a priori using von Bertalanffy equa-
tion. Fish and Fisheries, 9, 178–187. https://doi.org/10.1111/j.1467-2979.
2008.00279.x

Laake, J. L., Johnson, D. S., & Conn, P. B. (2013). Marked: An R package for
maximum-likelihood and MCMC analysis of capture-recapture data. Methods
in Ecology and Evolution, 4, 885–890. https://doi.org/10.1111/2041-210X.
12065

Letcher, B. H., Schueller, P., Bassar, R. D., Nislow, K. H., Coombs, J. A.,
Sakrejda, K., … Dubreuil, T. L. (2015). Robust estimates of environmental
effects on population vital rates: An integrated capture-recapture model of sea-
sonal brook trout growth, survival and movement in a stream network. The
Journal of Animal Ecology, 84, 337–352. https://doi.org/10.1111/1365-2656.
12308

Nicola, G. G., Almodóvar, A., Jonsson, B., & Elvira, B. (2008). Recruitment var-
iability of resident brown trout in peripheral populations from southern

VINCENZI ET AL. 11

https://github.com/simonevincenzi/Limit_sampling
https://github.com/simonevincenzi/Limit_sampling
https://doi.org/10.2307/2530381
https://doi.org/10.1016/S1470-160X(01)00015-2
https://doi.org/10.1016/S1470-160X(01)00015-2
https://doi.org/10.1890/15-1526.1
https://doi.org/10.1890/09-1758.1
https://doi.org/10.1890/09-1758.1
https://doi.org/10.1080/10556788.2011.597854
https://doi.org/10.1080/10556788.2011.597854
https://doi.org/10.1111/1365-2664.12172
https://doi.org/10.1111/1365-2664.12172
http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
https://doi.org/10.1111/j.1461-0248.2005.00784.x
https://doi.org/10.1111/j.1365-2656.2005.00949.x
https://doi.org/10.1111/j.1365-2656.2005.00949.x
https://doi.org/10.1111/j.1467-2979.2008.00279.x
https://doi.org/10.1111/j.1467-2979.2008.00279.x
https://doi.org/10.1111/2041-210X.12065
https://doi.org/10.1111/2041-210X.12065
https://doi.org/10.1111/1365-2656.12308
https://doi.org/10.1111/1365-2656.12308


Europe. Freshwater Biology, 53, 2364–2374. https://doi.org/10.1111/j.
1365-2427.2008.02056.x

Ogle, D.H. (2015). FSA: Fisheries stock analysis. R package version 0.8.21.
Retrieved from https://github.com/droglenc/FSA

Possingham, H. P., Fuller, R. A., & Joseph, L. N. (2012). In R. Gitzen,
J. Millspaugh, A. Cooper, & D. Licht (Eds.), Design and analysis of long-
term ecological monitoring studies Choosing among long-term ecological
monitoring programs and knowing when to stop (pp. 498–508). Cambridge,
MA: Cambridge University Press.

R Development Core Team (2014) R: A Language and Environment for Statisti-
cal Computing.

Reynolds, J. H. (2012). An overview of statistical considerations in long-term
monitoring. In R. Gitzen, J. Millspaugh, A. Cooper, & D. Licht (Eds.),
Design and analysis of long-term ecological monitoring studies (pp. 23–52).
Cambridge, MA: Cambridge University Press.

Skaug, H. J., & Fournier, D. A. (2006). Automatic approximation of the mar-
ginal likelihood in non-Gaussian hierarchical models. Computational Sta-
tistics and Data Analysis, 51, 699–709. https://doi.org/10.1016/j.csda.
2006.03.005

Smallegange, I. M., & Coulson, T. (2013). Towards a general, population-level
understanding of eco-evolutionary change. Trends in Ecology & Evolution,
28, 143–148. https://doi.org/10.1016/j.tree.2012.07.021

Thomson, D. L., Cooch, E. G., & Conroy, M. J. (2009). Modeling demographic
processes in marked populations. New York: Springer.

Vincenzi, S. (2014). Extinction risk and eco-evolutionary dynamics in a variable
environment with increasing frequency of extreme events. J R Soc Interface,
11, 20140441. https://doi.org/10.1098/rsif.2014.0441

Vincenzi, S., Crivelli, A., Munch, S., Skaug, H. J., & Mangel, M. (2016). Trade-
offs between accuracy and interpretability in von Bertalanffy random-effects
models of growth. Ecological Applications, 26, 1535–1552.

Vincenzi, S., Crivelli, A. J., Jesensek, D., Rubin, J.-F., Poizat, G., & De Leo, G.
A. (2008). Potential factors controlling the population viability of newly
introduced endangered marble trout populations. Biological Conservation,
141, 198–210. https://doi.org/10.1016/j.biocon.2007.09.013

Vincenzi, S., Crivelli, A. J., Jeseňsek, D., Jeseňsek, D., Campbell, E., & Garza,
J. C. (2019). Effects of species invasion on population dynamics, vital rates,
and life histories of the native species. Population Ecology, 61, 25–34.
https://doi.org/10.1101/177741

Vincenzi, S., Crivelli, A. J., Jeseňsek, D., Rossi, G., & De Leo, G. A. (2011).
Innocent until proven guilty? Stable coexistence of alien rainbow trout and

native marble trout in a Slovenian stream. Naturwissenschaften, 98, 57–66.
https://doi.org/10.1007/s00114-010-0741-4

Vincenzi, S., Crivelli, A. J., Satterthwaite, W. H., & Mangel, M. (2014). Eco-
evolutionary dynamics induced by massive mortality events. Journal of Fish
Biology, 85, 8–30. https://doi.org/10.1111/jfb.12382

Vincenzi, S., Jesenšek, D., & Crivelli, A. J. A. J. (2018). A framework for esti-
mating the determinants of spatial and temporal variation in vital rates and
inferring the occurrence of unobserved extreme events. Royal Society Open
Science, 5(3), 171087. https://doi.org/10.1098/rsos.171087

Vincenzi, S., Mangel, M., Crivelli, A. J., Munch, S., & Skaug, H. J. (2014).
Determining individual variation in growth and its implication for life-history
and population processes using the empirical Bayes method. PLoS Computa-
tional Biology, 10, e1003828.

Vincenzi, S., Mangel, M., Jesensek, D., Garza, J. C., & Crivelli, A. J. (2017).
The genetic and life-history consequences of extreme climate events. Pro-
ceedings of the Royal Society B, 284, 20162118.

Vincenzi, S., Mangel, M., Jesensek, D., Jesensek, D., Garza, J. C., & Crivelli, A. J.
(2016). Within- and among-population variation in vital rates and population
dynamics in a variable environment. Ecological Applications, 26, 2086–2102.

Vincenzi, S., Satterthwaite, W. H., & Mangel, M. (2012). Spatial and temporal
scale of density-dependent body growth and its implications for recruitment,
population dynamics and management of stream-dwelling salmonid popula-
tions. Reviews in Fish Biology and Fisheries, 22, 813–825. https://doi.org/10.
1007/s11160-011-9247-1

von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. The
Quarterly Review of Biology, 32, 217–231.

Wood, S. (2006). Generalized additive models: An introduction with R. Boca
Raton, FL: Chapman & Hall.

How to cite this article: Vincenzi S, Jesenšek D,
Crivelli AJ. Estimates of vital rates and predictions of
population dynamics change along a long-term moni-
toring program. Popul. Ecol. 2019;1–12. https://doi.
org/10.1002/1438-390X.1031

12 VINCENZI ET AL.

https://doi.org/10.1111/j.1365-2427.2008.02056.x
https://doi.org/10.1111/j.1365-2427.2008.02056.x
https://github.com/droglenc/FSA
https://doi.org/10.1016/j.csda.2006.03.005
https://doi.org/10.1016/j.csda.2006.03.005
https://doi.org/10.1016/j.tree.2012.07.021
https://doi.org/10.1098/rsif.2014.0441
https://doi.org/10.1016/j.biocon.2007.09.013
https://doi.org/10.1101/177741
https://doi.org/10.1007/s00114-010-0741-4
https://doi.org/10.1111/jfb.12382
https://doi.org/10.1098/rsos.171087
https://doi.org/10.1007/s11160-011-9247-1
https://doi.org/10.1007/s11160-011-9247-1
https://doi.org/10.1002/1438-390X.1031
https://doi.org/10.1002/1438-390X.1031

	 Estimates of vital rates and predictions of population dynamics change along a long-term monitoring program
	1  INTRODUCTION
	2  MATERIAL AND METHODS
	2.1  Study area and species description
	2.2  Sampling
	2.3  Statistical analysis of survival and growth
	2.3.1  Survival
	2.3.2  Growth

	2.4  Population dynamics

	3  RESULTS
	4  DISCUSSION
	4.1  Survival
	4.2  Growth
	4.3  Population dynamics

	4.3  ACKNOWLEDGEMENTS
	  Authors contributions

	  DATA STATEMENT
	  REFERENCES


