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Introduction

Understanding individual growth will always be an 
important biological problem, as survival, sexual 
maturity, reproductive success, movement, and migration 
are commonly related to growth and body size (Peters 
1983). Thus, variation in growth can have substantial 
consequences for ecological and evolutionary dynamics 
(Lomnicki 1988, Pelletier et al. 2007, Coulson et al. 2010).

Experimental and observational studies provide infor-
mation on growth throughout an individual’s lifetime or 
at specific life stages. However, a series of data points on 
size-at-age is difficult to interpret without reference to a 
model of growth, but nonlinear growth models allow us 
to condense the information contained in such a data 
series into a few parameters. In some growth models, 
those parameters are biologically interpretable, in the 
sense that they represent or summarize the most relevant 
biological processes and environmental factors deter-
mining variation in growth (West et  al. 2004), while 
parameters of other growth models do not have a clear 
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mechanistic interpretation and are best considered as 
curve-fitting parameters (Appendix S1: Text S1).

Growth models have multiple applications in ecology 
and evolutionary biology. For instance, when managing 
human intervention in natural populations, we may be 
interested in:

•	 Understanding how growth rates and size-at-age vary 
in time and space depending on environmental condi-
tions within and among populations of the same species 
(Vincenzi et al. 2014b).

•	 Inferring life-history strategies, that is, trade-offs 
between allocation of resources to competing physio-
logical functions such as growth, maintenance, and 
reproduction throughout a lifetime (Roff 2007).

•	 Estimating heritability of growth and size-at-age 
(Carlson and Seamons 2008).

Another potential application of growth models (e.g., 
for fisheries management) is the prediction of lifetime 
growth trajectories of individuals or group of individuals 
(e.g., year-of-birth cohort, same-sex individuals) from 
observations at early life stages. Growth models have 
mostly been used for describing or interpreting popu-
lation and individual processes, but have seldom been 
used for predictive purposes in ecology (Peters 1991), 
although an ample literature exists for health applica-
tions in humans (Berkey 1982, Radhakrishna Rao 1987, 
Shohoji et al. 1991, Roland et al. 2011).

For both basic and applied ecological goals, the choice 
of the growth model is often critical. Across growth 
models, we often face trade-offs between model com-
plexity, biological interpretability of model parameters, 
ease of parameter estimation, and model accuracy (i.e., 
the combination of goodness of fit and predictive power). 
These trade-offs are commonly faced in other ecological 
contexts (Ludwig and Walters 1985, Adkison 2009). For 
instance, Ward et al. (2014) tested the predictive perfor-
mance of short-term forecasting models of population 
abundance of varying complexity. They found that more 
complex parametric and nonparametric models often 
performed worse than simpler models, which simply 
treated the most recent observation as the forecast. In 
their case, the estimation of even a small number of 
parameters imposed a high cost while providing little 
benefit for short-term forecasting of species without 
obvious cyclic dynamics. However, when a signal of 
cyclic dynamics was clearly identifiable, more complex 
models were able to extract meaningful patterns from 
data and more accurately predict future abundances. 
Thus, the complexity of the best predictive model will be 
determined by the ecological situation.

A broad range of models describing the variation in 
size of organisms throughout their lifetime have been pro-
posed (von Bertalanffy 1957, Lester et al. 2004, Kimura 
2008, Quince et  al. 2008, Kooijman 2009, Omori et  al. 
2009, Russo et al. 2009), with varying degrees of model 
complexity, biological interpretability of parameters, and 

data requirements for parameter estimation. For some 
growth models, parameters may or may not be biologi-
cally interpretable depending on model formulation. For 
instance, the parameters of the widely used von Bertalanffy 
growth function (vBGF; von Bertalanffy 1957) to model 
growth of organisms may be considered either curve-
fitting parameters with no biological interpretation (i.e., 
providing just a phenomenological description of growth) 
or parameters that describe how anabolic and catabolic 
processes govern the growth of the organism (i.e., mecha-
nistic description; see Mangel 2006). The classic vBGF 
has three parameters: asymptotic size, growth rate, and 
theoretical age at which size is equal to 0 (or size at age 
0 in an equivalent formulation). In the original mecha-
nistic formulation of von Bertalanffy, asymptotic size 
results from the relationship between environmental con-
ditions and behavioral traits, and the growth coefficient 
is closely related to metabolic rates and behavioral traits 
(i.e., the same physiological processes affect both growth 
and asymptotic size). However, in the literature, asymp-
totic size and growth rate are commonly treated as inde-
pendent parameters with no connection to physiological 
functions, thus becoming a phenomenological description 
of growth.

In the vast majority of applications of growth models, 
parameters are estimated at the population level, but 
interpreted as those of an average individual in the popu-
lation. This approach fails to take into account the sub-
stantial variation in growth observed within populations, 
and severely limits the breadth and scope of the models 
(Sainsbury 1980, Siegfried and Sansó 2006, Vincenzi 
et  al. 2014b). Individual variation in growth can arise 
from a variety of processes. For example, individuals 
within a population vary in their intrinsic metabolic rates 
and behavioral traits (e.g., aggressiveness or territori-
ality; Rosenfeld et  al. 2014), which may have conse-
quences for their foraging dynamics and access to 
resources. Realized growth is a combination of an indi-
vidual’s intrinsic growth potential, environmental condi-
tions, intra- and interspecific competition, and stochastic 
events. For these reasons, the estimation of individual 
variation in growth is biologically and computationally 
difficult, and requires longitudinal data (Shelton and 
Mangel 2012). Random-effects models provide an intu-
itive framework for estimating heterogeneity of growth 
within and among populations, along with individual 
growth trajectories (Sainsbury 1980, Eveson et al. 2007, 
Sigourney et al. 2012).

Here, we explore how different formulations of the 
widely used vBGF with individual random effects offer 
different degrees of biological interpretability of model 
parameters, goodness of fit, and prediction of future 
growth trajectories or unobserved growth realizations. 
We start from the model that Snover et  al. (2005) 
developed for management of coho salmon Oncorhynchus 
kisutch, which treats the anabolic factor in the vBGF 
as the product of the catabolic factor and a factor 
related to the properties of the environment, and show 
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how correlation among parameter estimates arises and 
how different functional forms and individual or group 
variability in the growth function’s parameters provide a 
very flexible description of growth trajectories. However, 
flexibility comes at a cost, since it potentially reduces 
the biological interpretability of the parameters of the 
vBGF.

We use simulated data and test whether the same 
growth trajectories can be obtained using different for-
mulations and parameter combinations of the vBGF. 
We investigate the correlation between parameter esti-
mates, as the sign and strength of the correlation give 
insights on life-history strategies (Vincenzi et al. 2014b). 
We use one population of marble trout (Salmo marmo-
ratus) and one population of brown trout (Salmo trutta L.) 
living in streams located in western Slovenia (Zakojska 
and Upper Volaja, respectively) as model systems for 
the fitting and application of the growth model.

Marble trout is a resident salmonid endemic in 
northern Italy and Slovenia that is at risk of extinction 
due to hybridization with brown trout (Vincenzi et  al. 
2008) and massive mortalities associated with cata-
strophic flood events, whose frequency is increasing 
(Vincenzi et al. 2014a). Brown trout was introduced in 
Upper Volaja in the 1920s, with no additional stocking 
of fish after the introduction. Growth patterns and size-
at-age in salmonids contribute to determine survival 
(Woodson et al. 2013), sexual maturity, and reproductive 
success (Jonsson and Jonsson 2011), so that having a 
better understanding of growth has important implica-
tions for our understanding of the ecology of the two 
species, their population dynamics, the evolution of life-
history traits, and for the effective application of conser-
vation measures. For those populations, we test the 
goodness of fit of the models along with the empirical 
correlation between parameter estimates. Then, we test 
the ability of the models to predict future or unobserved 
size-at-age data. We finally discuss the biological inter-
pretation of the vBGF’s parameters, which are modeled 
as function of individual random effects and environ-
mental predictors.

Material and methods

Growth model

We use an extension of the von Bertalanffy model 
(vBGF, von Bertalanffy 1957, Essington et  al. 2001, 
Mangel 2006), which has been used to model the growth 
of organisms across a wide range of taxa (Kingsley 1979, 
Zullinger and Ricklefs 1984, Shine and Charnov 1992, 
Starck and Ricklefs 1998, Frisk et al. 2001, Lester et al. 
2004, Tjørve and Tjørve 2010).

We start with a description of the standard vBGF and 
we then follow with a formulation of the vBGF that 
allows for a description of the growth process in terms 
of interaction between individual behavior and prop-
erties of the environment.

The standard von Bertalanffy growth function.—In the 
vBGF, the growth of an organism results from a dynamic 
balance between anabolic and catabolic processes (von 
Bertalanffy 1957), where anabolic processes are those 
leading to tissue growth, differentiation of cells, and 
increase in body size, and catabolic processes are those 
involving the breakdown of complex molecules and the 
release of energy. If W(t) denotes mass at time t, the 
assumption of the vBGF is that anabolic factors are 
proportional to surface area, which scales as W(t)2/3, and 
that catabolic factors are proportional to mass. If a and 
b denote these proportionality parameters, then the rate 
of change of mass is 

(1)

 If we further assume that mass and length, L(t), are 
related by W(t) = ρL(t)3, with ρ corresponding to mass 
per unit volume, then 

(2)

where q = a/3ρ and k = b/3ρ. In this parameterization, 
q  is a coefficient of anabolism. The coefficient of catab-
olism, k, is commonly known as the von Bertalanffy 
growth coefficient and has the units of t−1. The coefficient 
q, with unit size·t−1, is proportional to the amount of 
resources available to an individual and will vary with 
environmental conditions and individual behavior. The 
asymptotic size (i.e., obtained by setting q – kL = 0 in Eq. 
2) is L∞ = q/k and if L(0) = L0 is size at age 0, we can 
readily solve the linear differential Eq. 2 by the method 
of the integrating factor. Two forms of the solution are 

(3)
and 

(4)

where t0 is the hypothetical age at which length is equal 
to 0.

The vBGF model in Eq. 4 has three parameters: L∞, k, 
and t0 (in addition to the residual variance when parameter 
values are estimated), which are usually estimated at the 
population or group (e.g., cohort, sex) level. L∞ is com-
monly treated as an independent parameter (i.e., not an 
explicit function of k, although a negative correlation 
between parameter estimates often emerges due to the 
presence of ridges in the likelihood surface, in particular 
when length-at-age data for older ages are relatively few 
or missing, see Vincenzi et al. 2014b) and the vBGF has 
often been used as a phenomenological and not mecha-
nistic description of the growth process (although see 
Essington et  al. [2001] and Temming and Herrmann 
[2009] for estimating consumption rates from vBGF 
parameter values). In this study, we will not make explicit 
reference to L∞, as it does not provide any insights on the 
behavioral and physiological processes governing growth.

dW

dt
=aW(t)2∕3 −bW(t).

dL

dt
=q−kL

L(t)=L∞(1−e−kt)+L0e−kt

L(t)=L∞(1−e−k(t−t0))



SIMONE VINCENZI ET AL. Ecological Applications 
Vol. 26, No. 5

1538

A

B

Fig.  1.  (A) Mean age (yr) at growth trajectories crossing, number of trajectories crossing divided by the total number of 
individuals (Norm traj crossing), and coefficient of variation of length at age 10 (CV of length) for von Bertalanffy growth models 
as in Eqs. 7 and 8 with different values of ψ and Pearson’s correlation between pairs of ki and γi. Panels in the same column are for 
models with the same correlation between pairs of ki and γi. For all models, individuals have the same asymptotic length L∞ = 300 mm, 
t0 = −0.32 y, k0 = 0.38 y−1, σu = σv = 0.36, �0 = L∞(k

1−�

0
). Vertical segments are standard deviations over 10 replicates with random 

drawing of individual random effects to simulate individual growth trajectories. (B) Ten growth trajectories simulated with the 
model in Eq. 8 and the same parameter estimates as in A. From left to right column, correlation between ki and γi equal to -0.7, 0, 
0.7. From top to bottom row, ψ equal to 0, 0.5, 1. See Table 1 for parameter definitions.
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Model with individual variation in parameters of 
anabolism and catabolism.—There are biological 
reasons for k (the coefficient of catabolism) and q (the 
coefficient of anabolism) to be linked (Shelton and 
Mangel 2012, Shelton et al. 2013). Therefore, we turn to 
a model that combines individual and environmental 
variation and allows dependence between k and q along 
with individual variation, that is k and q are defined and 
estimated at the individual level. Since q is the coefficient 
of anabolism, it should be closely linked to bottom-up 
factors in the environment, such as food conditions 
(Mangel 2006). By letting q vary across individuals (qi), 
we assume that “realized anabolism” may vary across 
individuals. The parameter ki determines how metabolic 
rates scale with the size of individual i and thus relates 
to an individual’s phenotypic capacity for growth. 
Snover et  al. (2005, 2006) assume that ki combines 
physiological and behavioral traits that determine 
individual activity and thus potentially affect the ability 
of an individual to obtain resources from the 
environment, although with a trade-off with energy 
expenditure. Thus, the “anabolic” conditions may be 
different for individuals and they may depend on ki as 
well as some properties of the environment. Under 
these assumptions, we model qi as a function of ki, γi, 
and a parameter ψ constrained between 0 and 1 that 
determines the degree to which qi depends on 
environmental (represented by γi) versus behavioral 
(represented by ki) factors, and set 

(5)

With the formulation in Eq. 5, ψ is the result of the 
interaction of the environment and the foraging charac-
teristics of the species, and may depend on patchiness of 
resources, fragmentation of the habitat, movement range 
of individuals. Units of γ depend on the value of ψ: when 
ψ = 0, γ has the units of q (size·t−1); when ψ = 1, γ has 
the units of size, while units are fractal when 0 < ψ < 1.

With Eq. 5, the expected length of individual i at age 
t is 

(6)

Eq. 6 is the formula describing length-at-age for indi-
vidual i that we will use in this study.

1. The case with γ common and k varying among 
individuals.—The case with γ common and k varying 
among individuals has been investigated in Snover et al. 
(2005, 2006), and Shelton and Mangel (2012). In this 
case, parameters have a clear biological interpretation 
when (1) ψ = 0, (2) ψ = 1, and (3) ψ between 0 and 1.

When (1) ψ  =  0, ki has no effect on an individual’s 
success at obtaining resources from the environment. 
Therefore, individuals with large ki have lower realized 
growth increments, since higher activity comes at a higher 
energetic cost. When (2) ψ = 1, individuals with large ki 
(i.e., aggressive and/or highly active individuals) have 

greatly increased access to resources, and therefore expe-
rience faster length-specific growth. For (3) values of ψ 
between 0 and 1, the relative growth rate for each indi-
viduals with different ki will change with an individual’s 
length. Individuals with large ki will grow faster at small 
lengths and individuals with small ki will grow faster at 
large size; the length or age at which individuals expe-
rience equivalent growth and when growth trajectories 
cross depends on ψ.

2. The case with both γ and k varying among individuals.—
We hypothesize that ki and γi co-vary among individuals. 
This additional variability in γ increases the complexity 
of the model by increasing the number of parameters to 
be estimated, and allows for a greater flexibility of 
growth trajectories of individuals (Fig. 1). For instance, 
while with a common γ between 0 and 1 and only k 
varying among individuals all growth trajectories 
intersect at the same age, with both k and γ co-varying 
among individuals we obtain a distribution of ages at 
which growth trajectories intersect.

However, a biological interpretation of the two param-
eters ki and γi, and in particular of ψ, becomes more 
challenging with respect to the case with only k varying 
among individuals. In fact, we will show that the bio-
logical interpretation of ψ depends on the sign and 
strength of the correlation between values of ki and γi, 
and ψ may also be seen as a parameter giving additional 
flexibility to the vBGF, rather than describing the relative 
importance of environmental and behavioral factors in 
determining qi.

As ψ is defined at the population level, but k and γ are 
allowed to vary among individuals, we describe potential 
growth trajectories by first fixing ψ (i.e., the relative 
importance of behavioral and environmental factors in 
determining anabolism) and explore how growth trajec-
tories may change with different strength and sign of 
correlation between values of ki and γi (Fig. 1).

When ψ = 0, the maintenance of size ranks through 
the lifetime of individuals and the mean age at which 
growth trajectories cross decreases going from a negative 
to a positive correlation between values of ki and γi. In 
the limiting case of a correlation between values of ki 
and γi equal to 1, growth trajectories never cross 
throughout the lifetime of individuals for any variance 
of ki and γi (Appendix S1: Figs S1 and S2). When ψ = 0, 
aggressive/more active individuals (larger ki) are always 
growing slower than less aggressive/active individuals. 
Thus, we may hypothesize that the more active indi-
viduals are either expending more energy than less active 
individuals without acquiring more resources, or are 
investing more energy on biological processes other than 
growth.

On the other hand, when ψ = 1 (i.e., asymptotic size 
is not an explicit function of k), the maintenance of size 
ranks (i.e., of size hierarchy) through an organism’s 
lifetime and mean age at which growth trajectories cross 

qi = �ik
�

i
.

Li(t)= �ik
(�−1)
i

(1−e−ki(t−t0)).
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increases going from a negative to a positive correlation 
between values of ki and γi (Fig. 1). In the limiting case 
of a correlation between ki and γi equal to 1, growth 
trajectories never cross through organisms’ lifetime 
(i.e.,  size ranks are always maintained throughout the 
lifetime of individuals), thus aggressive and/or highly 
active individuals are always able to obtain a higher share 
of resources (and invest them in growth). Thus, a similar 
pattern of growth at the population level emerges when 
ψ = 0 and values of ki and γi are strongly negatively cor-
related or when ψ = 1 and values of ki and γi are strongly 
positively correlated, but the biological and environ-
mental processes leading to the emergence of similar 
growth trajectories are different. For values of ψ between 
0 and 1, a rich variety of growth trajectories can be 
obtained depending on the correlation between values of 
ki and γi as well as their variances (Fig. 1), although the 
biological interpretation of ψ is challenging with respect 
to the case of individual variability only for k, in par-
ticular with values of ψ far from either 0 or 1.

Parameter estimation and individual variation

Formulations of the standard vBGF with individually 
varying parameters (L∞, k, t0) have been proposed previ-
ously (Sainsbury 1980, Francis 1988, Wang and Thomas 
1995, Laslett et al. 2002, Pilling et al. 2002, Eveson et al. 
2007, Sigourney et  al. 2012). Here, we present a novel 
formulation of the vBGF (as described in Growth model) 
specific for longitudinal data where γ, k, and t0 are a 
function of shared predictor(s) and individual random 
effects.

We treat t0 and ψ as population-level parameters 
(with no environmental predictors and no individual 
random effects), so that all individuals are assumed to 
share the same value. This improves the biological inter-
pretation of the other parameters and helps with model 
fitting. Since k and γ must be non-negative, we  use a 
log-link function to facilitate parameter estimation and 
convergence of the model-fitting procedure. For indi-
vidual i in group j (e.g., sex, year-of-birth cohort) we 
thus set 

(7)

where uij and vij are the standardized individual random 
effects, σu and σv are the standard deviations of the sta-
tistical distributions of the random effects (which we take 
to have prior distributions that are normal, while the 
posterior distribution is not guaranteed to be normal due 
to the nonlinearity of the likelihood function), k0 and γ0 
are population-level parameters, αj and βj are group-level 
parameters, and xi has value of 1 if individual i is in group 
j and 0 otherwise. The model with no predictors and no 
individual random effects contains only four parameters 

(plus the residual variance), log(k0), log(γ0), t0, ψ, that is, 
parameters are estimated at the whole population level 
with no individual variation in growth. In the following, 
we report and interpret parameter estimates of k0 and γ0 
on their natural scale, as this allows to directly comparing 
their estimates to published values.

We use the Automatic Differentiation Model Builder 
(ADMB) software to estimate the parameters of the 
growth models (Vincenzi et al. 2014b). ADMB is an open 
source statistical software package for fitting nonlinear 
statistical models (Fournier et al. 2012, Bolker et al. 2013) 
that is becoming a standard tool for use in fisheries stock 
assessment and management. ADMB–RE (the random-
effects module of ADMB) has the ability to fit generic 
random-effects models using an Empirical Bayes 
approach that implements the Laplace approximation 
(Skaug and Fournier 2006). Empirical Bayes (EB) refers 
to a tradition in statistics where the fixed effects and 
variance of a random-effects model are estimated by 
maximum likelihood, while estimates of random effects 
are based on Bayes formula. Although traditionally 
random effects are predicted and fixed effects are esti-
mated, we refer in this paper to estimates of ki and γi. 
Model fitting in ADMB-RE automatically stops when 
the maximum gradient (i.e., the larger of the partial 
derivatives of the likelihood function with respect to 
model parameters) is <10−4 (appropriate with log-
transformed model parameters).

The length of individual i in group j at age t is 

(8)

where εij is normally distributed with mean 0 and var-
iance �2

�
 (estimated in the model-fitting procedure).

For simplicity, we do not explicitly introduce process 
stochasticity, so that the likelihood is (Hilborn and 
Mangel 1997) 

(9)

where nj is the number of individuals in group j, J is the 
number of groups, mij is the number of observations from 
individual i of group j, l is an index that run over these 
observations. Further, the observed length measure-
ments for individual i in group j are denoted by Lijl, while 
tijl is the age of the individual when the l-th measurement 
is made. In the following, we will simply use ki and γi for 
the individual-level parameters.

Note that Eq. 9 is only the likelihood for the obser-
vation part of the model. To obtain the likelihood that 
is used for parameter estimation it is necessary to include 
the contributions from the random effects, and to inte-
grate the joint likelihood with respect to the random 
effects (Vincenzi et al. 2014b).

⎧⎪⎨⎪⎩

log(kij)= log(k0)+�jxi+�uuij

log(�ij)= log(�0)+�jxi+�vvij

t
(ij)

0
= t0

Lij(t)= �ijk
�−1
ij

(1−e−kij(t−t0))+�ij

J�
j=1

nj�
i=1

mij�
l=1

1√
2���

exp

⎛
⎜⎜⎜⎝
−

�
Lijl−L(tijl;�ij,kij,t

(ij)

0
,�)

�2

2�2
�

⎞⎟⎟⎟⎠
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We give a description of model parameters, model 
assumptions, and imposed parameter values or their 
empirical estimates/relationship in Table 1.

Case study

We use as model systems for fitting and application of 
the growth model one population of marble trout living 
in Zakojska stream and one population of brown trout 
living in Upper Volaja stream in the western region of 
Slovenia (Vincenzi et al. 2012, Fig. 2). The population of 
Zakojska was established in 1996 by stocking age-1 fish 
that were the progeny of parents from a relict, genetically 
pure marble trout population (Crivelli et al. 2000). Fish 
hatched in Zakojska for the first time in 1998 and the 
1998 cohort is the first included in the analysis. Upper 
Volaja was sampled for the first time in 2006 and the 
oldest cohort to be included in the analysis was born in 
year 2000. The two populations were sampled annually 
in June. Fish were collected by electrofishing and measured 
for length and mass to the nearest millimeter and gram, 
respectively. If fish were caught for the first time (or if the 
tag had been lost) and they were longer than 110  mm, 
they were tagged with Carlin tags (Carlin 1955) and age 
was determined by reading scales. Males and females in 
both marble and brown trout are morphologically indis-
tinguishable at the time of sampling. The probability of 
capture at time t of a fish alive at time t was higher than 
80% (Vincenzi et  al. 2008). Marble trout females reach 
sexual maturity when longer than 200 mm, usually at age 
3 or older, while age at first reproduction for brown trout 
in Upper Volaja occurs at age 2 or older. The maximum 
observed age for fish born in the streams was 9 and 10 yr 

in Zakojska and Upper Volaja, respectively. The last sam-
pling occasion included in the data set was June 2013. In 
Upper Volaja, the last cohort included was the one born 
in 2011. Due to a flood that almost completely wiped out 
the population in 2007 (Vincenzi et al. 2012), there were 
no fish born in Zakojska in 2008–2010. Also in Zakojska, 
the last cohort included was the one born in 2011. Density 
of fish age-1 and older (number/m2) was (mean ± standard 
deviation [SD]) 0.05 ± 0.04 in Zakojska from 1998 to 2013 
and 0.05 ± 0.05 in Upper Volaja from 2006 to 2013. In 
total, 1141 unique fish were included in the Zakojska data 
set and 1649 in the Upper Volaja data set.

Statistical analysis

Simulated data.—As this is the first time the model in 
Eq. 8 is proposed, we started by studying the behavior of 
the model using simulated data. First, we tested whether 
the same growth trajectories could be described using the 
parameter and growth functions in Eqs. 7 and 8 with 
different values of ψ from 0 to 1 with a step of 0.1. To do 
so, we first simulated 400 (potentially) 10-yr long unique 
growth trajectories with a true (i.e., data-generating) ψ 
(ψs) in Eq. 8 and for different scenarios with positive, 
negative, or no correlation (rs) between the 400 pairs of ki 
and γi. Specifically, we imposed a correlation structure 
between normal distributions of individual random 
effects for ki and γi (ui and vi, respectively), we randomly 
drew 400 (ui, vi) pairs from the joint probability 
distribution of random effects, and then obtained 400 
(log(ki), log(γi)) pairs following Eq. 7. To simulate a 
realistic empirical case, we used a mortality rate M and 
excluded one observation, on average, per individual. 

Table 1.  Model parameters, model assumptions, and data-generating parameter values or their empirical estimates/relationship.

Parameter Description

L∞ asymptotic length reached in the limit of infinite time
k coefficient of catabolism or vBGF growth coefficient
t0 age at which length is 0
q coefficient of anabolism
γ parameter describing the environmental contribution to anabolism
ψ parameter bounded between 0 and 1 describing the interaction between the environment and the 

foraging characteristics of the species
k0 and γ0 population-level parameters in the linear models for log(k) and log(γ)
α and β group-level parameters in the linear models for log(k) and log(γ)
u and v standardized individual random effects in the linear models for log(k) and log(γ)
σu and σv standard deviations of the statistical distributions of the random effects in the linear models for log(k) 

and log(γ)
Model assumptions
  L∞ = q/k asymptotic size emerges from the relationship between the coefficients of anabolism and catabolism
  q = γkψ the coefficient of anabolism q depends on environmental (represented by γ) versus behavioral (repre-

sented by k) factors, whose respective importance is modulated by the value of the parameter ψ
Estimated/data-generating parameter values and relationship between parameter values
  ψs data-generating ψ
  rs data-generating Pearson’s correlation between individual-level pairs of k and γ
  ψf fixed value of ψ when fitting length-at-age data
  rf empirical correlation between estimated pairs of k and γ
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We did not introduce group parameters to simulate 
individual growth trajectories (i.e., αj = βj = 0 in Eq. 7). 
Then, we fitted the model to the simulated growth 
trajectories by fixing the value of ψ (ψf) in Eq. 8. Due to 
the random sampling of ui and vi from the joint 
probability distribution, we ran 10 random replicates for 
each combination of ψs, ψf, and rs, and recorded the 
convergence of the model-fitting procedure as determined 
by the maximum gradient in ADMB-RE, average over 
replicates of mean absolute error (MAE; i.e., mean 
absolute difference between simulated length-at-age and 
length-at-age predicted by the fitted model) and mean 
correlation between the 400 estimated pairs of ki and γi 
(rf) across replicates (r̄f ) that successfully converged. We 
did not compare data-generating parameter values and 
parameter estimates as they can be meaningfully 
compared only when ψs  =  ψf. We also recorded how 
many times over the 10 random replicates for each 
combination of ψs, ψf, and rs the model fitting procedure 
failed to converge. Convergence failure means that 
ADMB-RE was not able to obtain a sufficiently small 
likelihood gradient, with the (default) criterion being 
10−4 for all parameters. The particular reason for lack of 
convergence may vary across simulation replicates, and 
although it is not feasible to investigate each case in 
detail, it is good practice to keep track of the number of 
cases in which convergence was not achieved.

Selection of the best growth model for Zakojska and Upper 
Volaja and prediction of unobserved data.—We checked 
the maximum gradient component to ensure that a 
satisfactory convergence was reached. Except for the 
case of nonlinear regression explained in the next 
paragraph, each model we tested included individual 
random effects as in Eq. 7. Following Vincenzi et  al. 
(2014b), we introduced year-of-birth cohort as fixed 
categorical effects to test whether its inclusion as 
predictor included model fitting to data for either 
population (αj and βj in Eq. 7). The model may not be 
always not statistically identifiable, in that ψ can only 
sometimes be estimated (Shelton and Mangel 2012). 
Thus, we fitted separately models with or without cohort 
as predictors of γi, ki, or both with ψ from 0 to 1 with a 
step of 0.1. We used the Akaike Information Criterion 
(AIC; Akaike 1974, Burnham and Anderson 2002) to 
select the best model. We then investigated correlation 
between the estimates of ki and γi. We tested whether the 
inclusion of individual random effects for both k and γ 
(thus increasing model complexity) increased model 
accuracy with respect to models that include individual 
random effects only for k (i.e., models in Shelton and 
Mangel 2012, Shelton et al. 2013). For the latter model, 
in Eq. 8, we thus fixed σv = 0.

We tested whether vBGF models with random effects 
for both k and γ with different values of ψ predicted 

Fig. 2.  Frequency of sampling events per individual and empirical growth trajectories for the populations of Upper Volaja 
(brown trout, Salmo trutta) and Zakojska (marble trout, Salmo marmoratus) streams, western Slovenia.

Upper Volaja

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9

Number of times sampled

F
re

qu
en

cy

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Age

Le
ng

th
 (

m
m

)

Zakojska

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9

Number of times sampled

F
re

qu
en

cy

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Age

Le
ng

th
 (

m
m

)



RANDOM-EFFECTS MODELS OF GROWTHJuly 2016 � 1543

substantially different mean cohort-specific growth tra-
jectories. In addition, we tested whether fitting non-
linear  least-squares regression with no random effects 
on  cohort-specific data (using the nls function in R; 
R Development Core Team 2011) leads to substantially 
different mean cohort-specific growth trajectories with 
respect to random-effect models.

We tested the predictive ability of (1) the best overall 
vBGF model with individual variation for both k and 
γ (where ψb is the value of ψ for the best model), as 
well as the models with (2) ψ  =  0 and (3) ψ  =  1 for 
both populations. We also tested the predictive ability 
of the best overall vBGF model with variation only 
for k. For each population, we: (1) randomly sampled 
one-third of fish that have been sampled more than 
three times throughout their lifetime (validation 
sample); (2) deleted from the data set all observations 
except the first one from each individual fish in the 
validation sample; (3) estimated the parameters of the 
vBGF for each individual including those in the vali-
dation sample; and (4) predicted the missing 
observations.

We compared the predictions of the vBGF to the pre-
dictions given by the mean length-at-age of the cohort 
of the fish. We used MEA and R2 with respect to the 1:1 
line observed data vs. predicted data as measures of pre-
dictive ability. The predictive abilities of the vBGF 
models were tested using the same 10 random validation 
samples for each population.

Results

Simulated data

Model fitting with simulated data showed that when 
growth trajectories had a negative correlation rs 
between ki and γi, the average correlation between ki 
and γi across replicates r̄f  tended to remain negative in 
the area below the 1:1 line in the ψs  −  ψf plane and 
around zero or positive above the line (Fig. 3a). When 
growth trajectories were simulated starting from a 
positive rs, r̄f  tended to remain close to 0 or slightly 
negative in the fitted models below the 1:1 line and 
mostly positive above the line (Fig. 3c). When rs was 
equal to 0, the empirical correlation between estimated 
ki and γi in the fitted models tended to be around 0 for 
the majority of combinations of ψs and ψf (Fig.  3b). 
Similar results were obtained when using different vari-
ances of the individual random effects (Appendix S1: 
Figs S3 and S4).

The probability of convergence of the model fitting 
procedure varied across combinations of ψs, ψf, and rs. 
Although a clear pattern of probability of convergence 
did not emerge, the model-fitting algorithm converged 
for most of the ψs  −  ψ f combinations and replicates 
(Fig. 3d–f). The average of MAE across replicates was 
smaller than 2 mm (thus an almost perfect fit) in more 
than 90% of the combinations of ψs and ψf.

Case study

Observed trajectories showed higher individual vari-
ation in growth and length at age in the marble trout 
population of Zakojska than in the brown trout popu-
lation of Upper Volaja (Fig. 2).

For the vBGF models without cohort as a predictor for 
either ki and γi, the correlation between ki and γi was 
function of ψ (Fig. 4), and tended to shift from a negative 
to a positive correlation with increasing values of ψ for 
both populations. In this case, for the population of Upper 
Volaja the best model according to AIC had ψ  =  0.6 
(AIC = 23 855.4), while the model with ψ = 0 had lower 
AIC than the model with ψ = 1 (23 951.4 vs. 24 059.2). For 
the population of Zakojska, the best model according to 
AIC had ψ = 0.3 (AIC = 17 387.8), while the model with 
ψ = 0 had lower AIC than the model with ψ = 1 (17 395.9 
vs. 17 445.1). The joint distribution of ψ and sign and 
strength of the correlation between ki and γi (Fig. 4) sug-
gested maintenance of size ranks throughout fish lifetime 
for both Zakojska and Upper Volaja trout populations, 
with growth trajectories crossing on average after sexual 
maturity (Fig. 1). Every model predicted the observed data 
to high accuracy (Zakojska, range of MAE = 7.1–8.5 mm, 
range of R2  =  0.98–0.98; Upper Volaja, 
MAE = 3.7–5.0 mm, R2 = 0.97–0.98). Assuming a lifespan 
of 10  yr (i.e., predicting 10  yr of length-at-age for each 
fish), growth trajectories predicted using estimated param-
eters for models with different value of ψ (and without 
cohort as predictor of either parameter) had similar mean 
age at crossing of growth trajectories and CV of length at 
age 10, but substantially different number of trajectories 
crossing throughout the lifetime of fish (Fig. 5).

For marble trout, the best model using AIC as model-
selection criterion had cohort as predictor both in ki and 
γi and ψ = 0.3 (Table 2). For brown trout, the best model 
had cohort as predictor for only γi and ψ = 0.6. For both 
Zakojska and Upper Volaja populations, the models 
with individual random effects only in ki performed far 
worse than the models with individual random effects for 
both parameters (Table 2).

Cohort-specific models for marble trout and brown trout 
with cohort as predictor both in ki and γi provided essen-
tially the same mean trajectories when ψ was equal to 1 and 
when ψ was the one giving the smallest AIC (i.e., ψ = 0.3 
for Zakojska and ψ  =  0.5 for Upper Volaja; Fig.  6). 
Cohort-specific vBGF models with no random effects fitted 
with standard nonlinear least-squares regression predicted 
substantially greater length-at-age than random-effects 
models for the marble trout population of Zakojska, while 
they provided the same mean cohort-specific growth tra-
jectories as the random-effects models for the brown trout 
population of Upper Volaja (Fig. 6).

Prediction of unobserved length-at-age.—In the population 
of Upper Volaja and Zakojska, 132 and 63 fish were 
sampled more than three times during their lifetime, 
respectively. The vBGF model with both k and γ function 
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of cohort, individual random effects, and ψ = 1 provided 
consistently better prediction of the missing observations 
than models with ψ = 0, ψ giving the best AIC value for 
models with both k and γ function of cohort and than 
prediction based on mean length-at-age of the respective 
cohort (Table  3; Figs  7 and 8). The best model with 
individual variation only in k provided substantially 
worse predictions than the best model with individual 
variation for both k and γ.

Discussion

Our formulation of the von Bertalanffy growth 
function balances biological details of the growth 
process and model fitting, and thus provides a flexible 
and powerful framework for estimating and under-
standing the role of abiotic and biotic factors in deter-
mining organisms’ growth. This unification is achieved 
by an ecological, rather than purely statistical, focus 
that considers growth in terms of the behavior–envi-
ronment interaction. Adding complexity in the form of 
individual variability in both mechanistic parameters (k 
and γ) of our formulation of the von Bertalanffy growth 
function increases model accuracy with respect to the 
model including individual variability only in k, which 
is the parameter summarizing physiological and behav-
ioral traits that determine individual activity. We now 
discuss the results of our simulations, parameter 

estimation, and model selection using two fish popula-
tions as a case study, and their implications for our 
understanding of the determinants of variation and for 
management and conservation.

Fig.  4.  Correlation (Pearson’s r) between estimates of ki 
and γi for different values of ψ for the von Bertalanffy growth 
model with no predictors other than individual random effects 
for either k and γ for Zakojska (gray) and Upper Volaja (black). 
Vertical segments are 95% confidence intervals of r. The best 
model with no predictors other than individual random effects 
according to AIC for Upper Volaja and Zakojska had ψ = 0.6 
and ψ = 0.4, respectively.
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Fig. 3.  (a–c) Average Pearson’s correlation r̄f  between ki and γi across replicates that successfully converged when fitting von 
Bertalanffy growth models as in Eqs. 7 and 8 with ψ = ψf on growth trajectories simulated with ψ = ψs, L∞ = 300 mm, t0 = −0.32 y, 
k0 = 0.38 y−1, σu = σv = 0.37, �0 = L∞(k
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0
), mortality rate M = 0.8, and correlation rs between ki and γi equal to (a, d) −0.9, (b, 

e) 0, (c, f) 0.9. (d–f) Number of replicates F that did not converge for every combination of ψs and ψf out of the 10 replicates. Plots 
for σu = σv = 0.60 and σu = σv = 0.14 are provided in Appendix S1 (Figs. S3 and S4).
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Relationship between ψ and the correlation between 
model parameters

Our simulation showed that models with different 
values of parameter describing the interaction between 
the environment and the foraging characteristics of the 
species (ψ) and variability in both the parameter of 

catabolism (k) and the parameter describing the environ-
mental contribution to anabolism (γ) are in general able 
to describe very similar growth trajectories. A clear 
pattern of probability of convergence of the model fitting 
procedure did not emerge from our simulations, but 
model fitting was successful in the vast majority of cases. 
This flexibility has to be ascribed to the many degrees of 

Fig.  5.  Mean age at crossing of growth trajectories, total number of trajectories crossing divided by the total number of 
individuals in the population (1649 for Upper Volaja and 1147 for Zakojska), and coefficient of variation of length at age 10 for von 
Bertalanffy growth models (with no predictors except individual random effects for either model parameter) with model parameters 
estimated for values of ψ from 0 to 1 with step 0.1. All growth trajectories of unique individuals were predicted for a theoretical 
lifespan of 10 yr according to the estimated model parameters at the individual level. Vertical dashed lines identify the best model 
according to Akaike information criteria (AIC) for models with no predictors for either parameter.
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Table 2.  The 10 best von Bertalanffy growth models according to AIC for the marble trout (Salmo marmoratus) population of 
Zakojska and the brown trout (Salmo trutta) population of Upper Volaja, western Slovenia.

Zakojska Upper Volaja

Model ψ AIC npar Model ψ AIC npar

k, γ 0.3 17 105 29 γ 0.6 23 269 19
k, γ 0.4 17 106 29 k, γ 0.5 23 277 31
k, γ 0.2 17 112 29 k, γ 0.6 23 283 31
k, γ 0.1 17 123 29 γ 0.5 23 303 19
k, γ 0.5 17 127 29 k, γ 0.3 23 328 31
k, γ 0 17 132 29 k, γ 0.2 23 338 31
γ 0.4 17 137 20 k, γ 0.4 23 346 31
γ 0.3 17 144 20 γ 0.4 23 348 19
k, γ 0.6 17 153 29 k, γ 0 23 350 31
γ 0.2 17 159 20 k, γ 0.7 23 363 31
k, γ 0.4 17 831 27 k, γ 0.6 24 977 27

Notes: Parameters included in the model column are those that are a function of cohort; npar is the number of model parameters; 
AIC = Akaike Information Criterion. The last row reports the best models when individual random effects are included only for k.
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freedom of our formulation of the von Bertalanffy 
growth function with individual random effects. 
Furthermore, when simulating growth trajectories with 
negative or positive correlation between pairs of ki and 
γi, the sign of the correlation tended to remain negative 
and positive, respectively, when fitting models with other 
values of ψ. This pattern emerged only in the case of 
simulated data, since a clear change of sign of the cor-
relation between pairs of ki and γi was found when fitting 
the growth models to empirical data. This has to be 
ascribed to some unrealistic growth trajectories that are 
obtained when keeping the same variance for individual 
random effects for each value of ψ used to generate the 
growth trajectories (Appendix S1: Fig. S5).

Case study

Model selection, parameter estimates, and trade-off 
between accuracy and interpretability in growth models.—
All models predicted the observed data very well, 
although there were small differences in performance 
among models for either population. However, when 
predicting growth trajectories using the estimated model 
parameters for models with different values of ψ, the best 
model (for either population) among those with no 
predictor for either model parameter was the one 
predicting the highest number of crossing growth 
trajectories. The mean absolute error was very low in 

each model, thus realized growth trajectories were almost 
perfectly predicted by each model. It follows that the 
differences in predicted growth trajectories should be 
mostly ascribed to differences in prediction of growth 
trajectories for fish that have been sampled one or a few 
times early in life, that is, the best model predicted that 
size ranks for the growth trajectories that were not 
realized due to early mortality were less maintained (i.e., 
more trajectories crossing) with respect to the other 
models.

Accuracy describes the ability of a model to explain 
observed data and make correct predictions, while inter-
pretability concerns to what degree the model allows for 
understanding processes. Often a trade-off exists between 
accuracy and interpretability; more complex models are 
usually opaque, while more interpretable models often do 
not provide the same accuracy or predictive power of more 
complex models (Breiman 2001). McCullagh and Nelder 
(1989) wrote: “Data will often point with almost equal 
emphasis on several possible models, and it is important 
that the statistician recognize and accept this”. However, 
different models may give different insights on the relation 
between the predictors and response variables (length-
at-age), and how to determine which model most accu-
rately reflects the data remains a challenge. One way is to 
use model selection procedures that trade off goodness-
of-fit (the likelihood) and model complexity (number of 
parameters) to select for the best model (Burnham and 

Fig. 6.  Cohort-specific growth trajectories for the trout populations of Zakojska (a, cohort 1999; b, cohort 2001) and Upper 
Volaja (c, cohort 2008, d, cohort 2007). Dashed line: prediction of model with no random effects fitted on cohort data with non-
linear least square regression. Dash-dotted line: cohort-specific model with cohort as predictor for both ki and γi with ψ = 0.3 and 
ψ = 0.5 (best models) for Zakojska and Upper Volaja, respectively. Solid line: cohort-specific model with cohort as predictor for 
both ki and γi with ψ = 1.
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Anderson 2002, Johnson and Omland 2004). In our work, 
the AIC analysis showed for either population that models 
with individual random effects for both parameters per-
formed substantially better than models with individual 
random effects only for k. Thus, increasing the complexity 
of the model by allowing individual variation in both 
parameters increased the accuracy of the growth models.

The best model for the marble trout population of 
Zakojska included cohort as a categorical predictor for 
both γ and k, while for the brown trout population of 
Upper Idrijca, the best model included cohort as pre-
dictor of k. That means that parameter values as well as 
the resulting predicted growth trajectories of fish seem to 
be more similar to those of fish in the same cohort than 
to those of the population as a whole.

The prediction of mean cohort-specific growth trajec-
tories using models with or without random effects showed 
different results for the populations of Upper Volaja and 
Zakojska. For the brown trout population of Upper Volaja, 
cohort-specific models with no random effects (i.e., esti-
mated using the nls function in R) and random-effects 
models with cohort as predictor of both ki and γi with either 
ψ = 1 or ψ of the best model provided essentially the same 
prediction of mean cohort-specific growth trajectories. On 
the other hand, for the marble trout population of Zakojska 
the random-effects models provided essentially the same 
predictions of mean cohort-specific growth trajectories, 
while the cohort-specific models with no random effects 
tended to predict substantially higher length-at-age for fish 
older than 4  years old. This occurred because there was 
higher variation in length-at-age in Zakojska than in Upper 
Volaja and some big fish tended to have a longer lifespan 
in Zakojska, thus growth trajectories tended to be “pulled 
up” by the big, older individuals. This result supports the 
use growth models with individual random effects, in par-
ticular when there is substantial variability in both growth 
rates and size-at-age of individuals living in the same popu-
lation. However, in both populations the random-effects 
models provided essentially the same predictions of mean 
cohort-specific growth trajectories.

Biological interpretation of the selected growth models and 
parameter estimates.—Across taxa, climatic vagaries 
during the first stages of life have the potential to influence 
the mean growth trajectories of cohorts, as well as other life 
histories. Strong empirical evidence of early induced effects 
on later growth rate, life-history traits, and behavior of 
organisms is quite recent (Danchin and Wagner 2010, 
Salvanes et al. 2013, Ait Youcef et al. 2015). Jonsson and 
Jonsson (2014) recently discussed how conditions fish 
encounter early in their life cycle could leave lasting effects 
on morphology, growth rate, life history, and behavioral 
traits. Vincenzi et al. (2014a,b) found that other processes 
may be potentially responsible for variability of mean 
growth trajectories of cohorts, such as high variance in 
reproductive success combined with either high heritability 
of growth or heterogeneity in site profitability accompanied 
by limited movement. High heritability of growth (Carlson T
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and Seamons 2008), maternal decisions on the timing and 
location of spawning (Letcher et al. 2011), and dominance 
established early in life (Gilmour et al. 2005) are all processes 
that may in combination or by themselves explain the 
maintenance of size ranks throughout fish lifetime.

Trade-offs between growth and survival have been 
found across species and taxa (Pauly 1980) as well as at 
the individual level within populations at the early life 
stages (Biro and Post 2008, Woodson et al. 2013). Given 
the similarity in growth of fish in the same cohort, we may 
hypothesize cohort effects also in survival, either in the 
direction of higher mortality for faster-growing cohorts 
due to trade-offs between growth and survival, or of 
higher survival for faster-growing cohorts when faster 
growth is a signal of higher quality of individuals.

The biological interpretation of model parameters is 
easier when only the individual random effects (and not 
cohort) are included as predictors. In this case, for both 
populations the model with ψ = 0 performed substantially 
better than the model with ψ = 1. This result, along with 
the strong negative empirical correlation between estimates 
of ki and γi when ψ = 0, suggests that size ranks are largely 
maintained throughout marble and brown trout lifetime, 

crossing of growth trajectories mostly occurs after sexual 
maturity, and that more aggressive/active fish are on 
average growing slower than those less aggressive/active.

One hypothesis is that both trout populations live in an 
environment in which resource acquisition depends less on 
intrinsic behavioral traits and more on habitat, and thus 
more active individuals are expending more energy than 
less active individuals without acquiring more resources. 
Support for this hypothesis comes from the mean bigger 
size-at-age found in both Upper Volaja and Zakojska for 
trout living in the uppermost part of the streams, as more 
food (in particular, invertebrate drift) is available there.

As for growth trajectories crossing mostly after sexual 
maturity, one potential explanation is sex-specific ener-
getic investment in reproduction, with females allocating 
more energy to reproduction than growth with respect 
to males.

Predicting unobserved data.—The variation in growth 
and size that characterizes organisms can almost always 
be modeled retrospectively. However, the limited number 
of attempts at predicting missing size observations or 
unobserved growth trajectories may also depend on the 

Fig. 7.  Example of prediction of validation data for the marble trout population of Zakojska with the von Bertalanffy growth 
model with cohort as predictor of ki and γi and (a) ψ = 1, (b, best model) ψ = 0.3, and (c) ψ = 0. (d) Prediction of validation data 
using mean length-at-age for the cohort of the individual whose growth is predicted.
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intrinsic unpredictability of some growth curves, for 
which it may be impossible to accurately predict later 
portions of the growth trajectory when only a few 
observations early in life are available (e.g., ocean growth 
of anadromous salmonids when only a few observations 
relative to the freshwater phase are available; Norton 
et al. 1976). The vBGF models with cohort as predictor 
of both ki and γi, and ψ = 0, 1, or ψ of the best overall 
model (ψb) provided good predictions of unobserved 
growth trajectories for both the marble and brown trout 
populations, and except for one case (ψ  =  ψb for 
Zakojska) the predictions were consistently better than 
predictions of the best model with individual variability 
only for k and of predictions based on the mean length-
at-age of the fish cohort. However, for neither the marble 
trout population of Zakojska nor for the brown 
population of Upper Idrijca did the best model selected 
according to AIC provide the best prediction of 
unobserved growth trajectories. Although the best model 
did not formally overfit, the additional flexibility 
provided by a value of ψ not equal to 0 or 1 did not 
translate in more accurate predictions of unobserved 
growth trajectories.

Conclusions and implications for management

The purpose of a scientific investigation should drive 
model formulation and the type and amount of data col-
lected. Random-effects models and powerful software 
and routines allow the fitting of complex models, but 
often complexity comes at the cost of interpretability of 
model parameters. Our work shows that adding addi-
tional complexity to the von Bertalanffy growth function 
(e.g., cohort as predictor of vBGF’s parameters, varia-
bility in both k and γ) may offer substantial advantages 
in terms of understanding of the determinants of growth 
patterns and predicting or estimating the future or unob-
served size-at-age of individuals. When using the model 
formulation that we propose in this study and for ease 
of interpretation of model parameters, we recommend 
limiting model selection to models with ψ = 0 (vBGF as 
formulated by von Bertalanffy, in which asymptotic size 
is an explicit function of the growth coefficient) or ψ = 1 
(vBGF as commonly fitted, in which asymptotic size is 
independent of the growth coefficient). In those two 
cases, model selection may give clearer insights on pro-
cesses leading to individual and group variation in 
growth while providing accurate predictions of 

Fig. 8.  Example of prediction of validation data for the brown trout population of Upper Volaja with the von Bertalanffy 
growth model with cohort as predictor of ki and γi and (a) ψ = 1, (b, best model) ψ = 0.3, (c) ψ = 0. (d) Prediction of validation data 
using mean length-at-age for the cohort of the individual whose growth is predicted.
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unobserved or future size-at-age data and growth trajec-
tories. Further insights on the processes leading to vari-
ation in growth would come from combining parameter 
estimation and model selection with estimates of meta-
bolic rates, patchiness of resources, movement of fish, 
and costs of reproduction. Further investigation on these 
trade-offs are needed using other growth models and 
other species.

By furthering our understanding of variation in life-
history processes that depend on, or correlate with, 
growth processes, our modeling approach has relevant 
implications for more applied contexts. For instance, 
our results support the hypothesis that both trout popu-
lations live in an environment in which resource acqui-
sition depends more on habitat selection than on intrinsic 
behavioral traits (although, especially early in life, 
intrinsic difference in behavioral traits contributes to 
habitat selection). The hypothesis is also supported by 
the consistently bigger size-at-age of fish occupying the 
uppermost part of the western Slovenian streams in 
which other marble trout populations live (where a 
larger portion of stream drift is available since no fish 
are present upstream) than of those fish living further 
downstream (Vincenzi et al. 2010, 2014b, 2015). Trout 
are typically stationary feeders that hold relatively fixed 
positions from which they make short forays to feed; 
according to our model-selection results, habitat choice 
or chance (such as being born more upstream, especially 
when natural barriers reduce or impair upstream 
movement) are critical for growth and fitness of the indi-
vidual. Riverscapes are highly spatially heterogeneous 
and the effects of habitat type and quality on individual 
fitness may be strongest and best explained at the micro-
habitat spatial scale (Fausch 1984). The importance of 
habitat selection may thus suggest the use of spatially 
explicit models for studying the population dynamics of 
the two species, as well as for predicting the evolution 
of growth and other life-history traits (Ayllón et  al. 
2016).

Estimates of growth are also fundamental to any 
assessment of population demographics and population 
dynamics for management. For instance, age-structured 
stock assessment methods are based on size-at-age that 
is often derived from parameters of the von Bertalanffy 
growth model for that species (Katsanevakis and 
Maravelias 2008). We have shown that for the salmonid 
populations that we used as a model system, our model 
allows one to use a single measurement early in the life 
of individual fish (or, equivalently, a set of measurements 
from a cohort) to obtain accurate predictions of lifetime 
individual or cohort size-at-age.
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