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a  b  s  t  r  a  c  t

Random  removal  and  the  attack  from  most-  to  least-connected  node  (i.e.  species)  are  the  two  limit  criteria
for sequential  extinction  of  species  in food  webs,  but  a continuum  of possibilities  exists  between  them.

We  use  simulations  to  test  the  robustness  of 14 empirical  food  webs  to species  loss  by  varying a
parameter  I  (intentionality)  that defines  the removal  probability  (extinction  risk)  of  species  with  high
number  of  trophic  connections.  The  removal  probability  of highly  connected  species  increases  with  I. We
found  that  food  web  robustness  decreases  slowly  when  the  extinction  risk  of  highly  connected  species
increases  (we  call  this  region  random  removal  regime),  until  a threshold  value  of  I is  reached.  For  greater
values  of  the  threshold,  we  found  a dramatic  reduction  in robustness  with  increasing  intentionality  in
ood web robustness
cale-free networks
xtinction risk

almost  all  the  food  webs  (intentional  attack  regime).
Link-dense  networks  were  more  robust  to  an increase  of I. Larger  food  webs (i.e. higher  species  rich-

ness)  were  more  sensitive  (i.e.  robustness  decreased  faster)  to the  increase  of extinction  risk  of  highly
connected  species.  The  existence  of  a clear  transition  in  system  behaviour  has  relevant  consequences  for
the interpretation  of  extinction  patterns  in  ecosystems  and  prioritizing  species  for  conservation  planning.
. Introduction

Food webs have been central to ecological research for decades
Cattin et al., 2004; Jordán et al., 2003; May, 1972; McCann, 2000;

ontoya and Sole, 2003), and the study of the robustness of food
ebs to species loss is increasingly relevant for species and ecosys-

em conservation (Montoya et al., 2006; Raffaelli, 2004; Zavaleta,
004).

The loss of a species in ecosystems (primary extinction) can
ascade into further extinctions (secondary extinctions), as con-
umers’ persistence depends on the persistence of their resources.
any theoretical and empirical studies have investigated how food
eb properties, such as modularity, degree-distribution (i.e. the
robability distribution of the number of trophic connections of
pecies), presence and distribution of keystone species may  influ-
nce the pattern of secondary extinctions in ecosystems as well as
ood web robustness (Allesina and Pascual, 2009; Bascompte et al.,
005; Dunne et al., 2002a; Jordán et al., 2003; Solé and Montoya,

001). In the vast majority of studies on extinction patterns in food
ebs, a species is assumed to go extinct after a primary extinction
hen is left without any resources to exploit (Allesina and Bodini,

∗ Corresponding author. Tel.: +39 521 905674; fax: +39 521 905223.
E-mail address: michele.bellingeri@nemo.unipr.it (M.  Bellingeri).
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2004; Allesina and Pascual, 2009; Dunne et al., 2002a; Solé and
Montoya, 2001). This is clearly the best-case scenario (Allesina and
Pascual, 2009; Dunne, 2006), as the occurrence of other common
effects, such as size-dependent-dynamics, top-down cascades or
energetic thresholds, would result in additional losses (Bellingeri
and Bodini, 2012; Curtsdotter et al., 2011; Dunne, 2006).

Simulation studies have shown that the extinction of highly
connected species is likely to generate a greater number of sec-
ondary extinctions than when species are randomly removed from
the food web  (Allesina and Bodini, 2004; Dunne et al., 2002a; Dunne
and Williams, 2009; Solé and Montoya, 2001). Notions of error and
attack sensitivity were first introduced in the physical literature
and then successfully applied to the study of food webs (Albert
and Barabasi, 2002; Dunne et al., 2002a; Solé and Montoya, 2001;
Strogatz, 2001). A network is error resistant (or resistant to failure)
when it is unlikely to be damaged by random removal of nodes.
On the other hand, a network is sensitive to attack when it can be
either highly damaged or destroyed by a targeted attack, such as the
selective removal of highly connected nodes (Albert and Barabasi,
2002; Dunne et al., 2002a).

The sequential removal from most- to least-connected species

(intentional attack) and random extinction of species (random
removal) are two limit criteria for determining primary extinctions
in food webs (least- to most-connected should be the other limit
criterion, but it is rarely used in practice), and both approaches

dx.doi.org/10.1016/j.ecolmodel.2012.12.011
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:michele.bellingeri@nemo.unipr.it
dx.doi.org/10.1016/j.ecolmodel.2012.12.011
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Table 1
Main features of food webs used in this study. L, total number of links in the food web; S, number of species; C, food web  connectance (L/S2). Refs: Literature reference for
the  food web. Keys: Short id of food web.

Food web S C = L/S2 L/S Refs Key

Bridge Brook Lake 25 0.171 4.28 Havens (1992) Br
Coachella Valley 29 0.312 9.03 Polis (1991) Co
Cheasepeake Bay 31 0.071 2.19 Baird and Ulanowicz (1989) Ch
St  Martin Island 42 0.116 4.88 Goldwasser and Roughgarden (1993) SM
St  Marks Seagrass 48 0.096 4.60 Christian and Luczkovich (1999) SMk
Grassland 61 0.026 1.59 Martinez et al. (1999) Gr
Ythan  Estuary 91 83 0.057 4.76 Hall and Raffaelli (1991) Y91
Scotch Broom 85 0.031 2.62 Memmott et al. (2000) Sc
Stony  Stream 109 0.07 2.19 Townsend et al. (1998) St
Little  Rock Lake 92 0.118 10.84 Martinez, 1999 Li
Canton Creek 102 0.067 6.83 Townsend et al. (1998) Ca
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Ythan  Estuary 96 124 0.038 

El  Verde Rainforest 155 0.063 

Mirror Lake 172 0.146 

ave been widely used to study patterns of secondary extinctions
n ecosystems as well as to measure food web robustness. How-
ver, it is possible to introduce other removal criteria along the
ontinuum from the random removal of species to the intentional
ttack.

Across ecosystems, certain species – not necessarily the most
onnected – can be more prone to extinction, either because
referentially targeted by natural or human agents (e.g. pollu-
ion, species invasion, overexploitation, weather extremes) or for
nternal dynamics or properties of the biological community (e.g.
ize-dependent dynamics). Other factors can decrease the species
isk of extinction, e.g. the ability of consumers to use or prey on
ther resources in the case of resource loss (i.e. “rewiring of the
ood web”), or the human conservation efforts. In this context, a
aluable approach to primary species extinction in food webs is to
ntroduce non-uniform and non-deterministic criteria for species
xtinction. The introduction of probabilistic approaches to species
xtinction may  offer more realistic predictions of both primary and
econdary extinction dynamics in food webs as well as insights on
ossible transitions in system behaviour (e.g. from robustness to
ragility). Further, a probabilistic approach can help understand
ow changes in the primary extinction risk of species affect sec-
ndary extinctions in ecosystem.

In a recent work, Gallos et al. (2006) studied the robustness of
cale-free networks, i.e. networks whose degree-distribution fol-
ows a power law. They used the probability W(k)  ̃ k˛ for a node
f degree k (i.e. number of links of the node) to become inactive,
here for: (i)  ̨ = 0 the removal is random; (ii)  ̨ < 0 low-degree
odes are more vulnerable; (iii)  ̨ > 0 high-degree nodes are more

ikely to be removed than low-degree nodes. Gallos et al. (2006)
howed that a little increase of  ̨ strongly reduces the percolation
c. In other words, with a moderate increase of the probability of
emoving highly connected nodes, the scale-free network is quickly
estroyed following the inactivation of a small number of nodes.

So far, how network robustness changes when increasing the
robability of removing highly connected nodes has not been stud-

ed either in model or empirical food webs. Here, we  analyse the
obustness of 14 empirical food webs to node loss by introduc-
ng a parameter I (intentionality) that defines the probability of
emoving highly connected species. When I increases, so does the
xtinction risk of highly connected species.

. Material and methods
.1. Data set

A food web can be described as a directed network with S species
nodes) and L trophic interactions among them (links), describing
.76 Huxham et al. (1996) Y96

.74 Waide and Reagan (1996) El

.13 Dunne et al. (2002a,b) Mi

who eats whom (Dunne, 2006; Montoya et al., 2006). In this work,
we used food webs that represent a wide range of species numbers,
link densities, taxa, habitat types (terrestrial, aquatic an transition
ecosystems). In Table 1, we report the basic properties of each food
web, such as number of species (S), average number of links per
species (L/S), and connectance (C = L/S2). Since S2 is the maximum
possible number of trophic interactions in a S × S matrix, food web
connectance describes the realized fraction of trophic interactions
in the food web.

2.2. Robustness

Food web robustness is usually tested with simulations in which
a single species is removed at each step (i.e. primary extinction),
and the number of secondary extinctions (i.e. extinctions following
the primary extinction) is recorded (Allesina and Pascual, 2009;
Dunne et al., 2002a; Dunne and Williams, 2009; Solé and Montoya,
2001). Species going primarily extinct may  be selected according to
a particular criterion (i.e. random removal, decreasing or increasing
number of connections, etc.), and primary extinctions are repeated
until all the species have gone extinct. With a topological approach
(i.e. based on presence/absence or links, with no information on
interaction strength), a network node goes extinct when it loses
all incoming connections. In food webs, that means a species goes
extinct when it is left without any exploitable resources.

Here, we  test the robustness of 14 empirical food webs (Table 1)
by introducing a novel criterion for primary extinctions. We  assume
that consumers cannot switch from one type of prey to another (i.e.
no food web  “rewiring”). Several measures of food web  robustness
have been proposed, such as secondary extinction area (Allesina
and Pascual, 2009), error and attack sensitivity (Allesina and Bodini,
2004; Allesina et al., 2006), R25 (Srinivasan et al., 2007). In this work,
we use ‘structural robustness’ (R), that is the proportion of primary
extinctions leading to a particular proportion of total extinctions
(Curtsdotter et al., 2011; Dunne et al., 2002a; Dunne and Williams,
2009; Dunne, 2006):

R˛ = E

S
(1)

where E is the number of primary extinctions that produces a per-
centage ˛ of total extinctions (primary + secondary) out of the total
number of species S in the food web. We used two measures of R:
(i) the proportion of primary extinctions triggering the loss of half
of the species (R50) (Curtsdotter et al., 2011; Dunne et al., 2002a;
Dunne and Williams, 2009; Dunne, 2006) and (ii) the proportion of

primary extinctions causing food web  collapse (i.e. extinction of all
species, R100) (Dunne, 2006; Ebenman, 2011). The maximum possi-
ble value of robustness when using R50 is 0.5 (i.e. half of the species
must be removed to trigger the loss of half of the species in the food
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Fig. 1. Removal probability PE (k|I) of a species with k trophic interactions for three
value of intentionality I (solid line, I = 0; dashed line, I = 0.1; point-dashed line, I = 0.2)
in Eq. (2) (exponential probability mass function) for St Marks food web. The solid
horizontal line represents the random removal extinction scenario. The probability
M. Bellingeri et al. / Ecol

eb), while the minimum is 1/S  (i.e. the extinction of one species
eads to the extinction of half of the species in the food web). For
100, maximum and minimum values of robustness are 1 and 1/S,
espectively.

.3. Attack strategies

The total number of trophic interactions k of a species in a food
eb (i.e. degree of the node/species) is the sum of the number of the

ngoing links (resources or prey) and the number of the outgoings
inks (consumers or predators).

We used two different probability mass functions to define the
emoval probability of species in a food web, namely the exponen-
ial and the power-law probability mass functions.

In the first case, the probability of removing a species with k
rophic interactions with intentionality I, PE (K = k|I), is defined by
he family of exponential probability mass functions:

E(K = k|I) = (1 − I)(kmax−k)Nk∑kmax
i=kmin

(1 − I)(kmax−i)Ni

0 ≤ I < 1 (2)

here kmax is the maximum number of trophic interactions for a
pecies, kmin the minimum number, Nk the number of species with
egree k. The subscript E in PE specifies the exponential probability
ass function. From now on, we simply use PE (k|I) in order to

implify notation. When I → 1, we tend to sequentially remove the
ost connected species (intentional attack), where:

E(k|1) ≡ lim
I→1

P(k|I) = ık, kmax (3)

When I = 0, species are randomly removed, i.e. all nodes share
he same probability of being removed:

E(k|0) = Nk

Ntot
(4)

here Ntot indicates the total number of nodes in the network. In
he second case, the removal probability PP (k|I) of nodes is defined
y the power-law probability mass function:

P(k|I) = kI
i∑Ntot

i=1 kI
i

0 ≤ I < ∞ (5)

here ki indicates the degree of node i, the exponent I is the inten-
ionality parameter (corresponding to parameter  ̨ in Gallos et al.,
006) and the subscript P in PP indicates the power law. With the
ower-law formulation, the probability of removing highly con-
ected species increases with I, where for I = 0 species are randomly
emoved, and with I → ∞ nodes are removed from most- to least-
onnected. We  chose the power-law probability mass function in
rder to compare robustness of food webs to that of scale-free
etworks in Gallos et al. (2006).  Examples of removal probability

or three values of the intentionality parameter in (Fig. 1).
In addition, as a third scenario we removed species from the

ost- to the least-connected (i.e. intentional attack). The degree
 is recalculated with each new primary extinction. In the case of
ies, i.e. nodes with the same degree, we randomly ordered those
odes.

Since the result of simulations using Eq. (2),  Eq. (5) and with
he intentional attack are stochastic realizations, for each value of

 and each food web we carried out 1000 simulations. We  used
he mean across replicates as our measure of robustness for both
50 (R̄50) and R100 (R̄100). We  could not directly compare the results
btained with the two family of functions as we had to use different

ets of values of I for the power-law and exponential probability
ass functions. For the exponential removal probability function

Eq. (2)), we used I values obtained by bisections from I ∼ 1 to I = 0
I = 0, 0.00098, 0.00196, 0.00390625, 0.0078125, 0.015625, 0.03125,
of  removing highly connected species increases with I.

0.0625, 0.125, 0.25, 0.5, 0.9999). We  used the following bisections
in order to analyse in greater details the increase of the removal
probability in the highest degrees region.

For the power-law removal probability function (Eq. (5)), we
used the same set of I values used by Gallos et al. (2006) (I = 0, 0.25,
0.5, 1, 2, 4) in order to directly compare the response of scale-free
networks presented in Gallos et al. (2006) to that of food webs.

A visual inspection of plots of robustness R (R̄50 and R̄100) vs. I
when using the exponential function in Eq. (2) showed that R was
fairly constant for increasing I up to a threshold value after which it
sharply declined with further increases of I. To fit these trajectories,
we used two-phase regression models, that is regression models in
which two straight lines are connected at a breakpoint It, in the
form:

{
R = ˛1 + ˇ1I for I < It

R = ˛2 + ˇ2I for I ≥ It

with the restriction for continuity ˛1 + b1It = ˛2 + ˇ2It. We  fitted the
two-phase regressions using the library segmented available for
R (R Development Core Team, 2011). Parameters estimation pro-
ceeds in two  parts: a generalized linear model (GLM) is first fitted
to the data, then a broken-line relationship (estimation of slopes
and breakpoint) is added by re-fitting the model. We  used Davies
test for significant difference-in-slope (Davies, 1987). We  set sta-
tistical significance at the 0.05 level. We  carried out all simulations
and statistical analyses using R 2.14.0 (R Development Core Team,
2011).

2.4. Robustness–complexity relationship

We used linear regressions on both linear and log–log scales to
explore the relationship between It and two  parameters describing
food web  complexity, namely species richness (S) and connectance
(C= L/S2) (Table 1). We  used AIC to select the best model (we

corrected the likelihood when the response variable was  log-
transformed).
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. Results

.1. Exponential

Using the exponential probability mass function, a value of
ntentionality close to 1 (i.e. close to the maximum value allowed
y the probability mass function) was necessary across food webs
o obtain robustness values for both R̄50 and R̄100 comparable to
hose obtained with the intentional attack (Figs. 2 and 3).

For increasing I, we observed a slow-to-fast decrease in robust-
ess after reaching a threshold value (Figs. A1 and A2). The Davies
est for difference-in-slope was significant for each food web  and
or both R̄50 and R̄100 (Table 2). For all the food webs, the slope of
he regression line for values of intentionality I > It was on average
n order of magnitude greater than the slope of the regression line
or I < It (Table 2). Only in Mirror lake food web (for R̄50) a sharp
ecrease in robustness was not observed. Interestingly, some food
ebs showed an increase in robustness with increasing intention-

lity before the sharp decline in robustness for values of I greater
han It.

.2. Power-law

For both measures of robustness, increasing intentionality gen-
rally decreased robustness, although for two food webs (Bridge for
¯ 50 and Coachella for R̄100) robustness tended to increase for val-
es of I up to 2. Across food webs, robustness for I = 1 in Eq. (5) was
ubstantially greater than robustness obtained with the intentional
ttack for both R̄50 and R̄100 (Figs. 4 and 5). Table A.1 shows the ratio
 key on each panel identifies the food web as reported in Table 1. Left to right I = 0,
999. (For interpretation of the references to colour in this figure legend, the reader

between robustness obtained with I = 1 in Eq. (5) and robustness
obtained with the intentional attack. Only when setting I = 4 in Eq.
(5), and only for some food webs, we  obtained values of robustness
similar to the one given by the intentional attack.

3.3. Relationship between breakpoint and complexity

Food web  connectance C showed no statistically significant
relationship with breakpoint It for R̄50 with variables either on
either linear or log–log scale, while we  found a negative rela-
tionship between C and It for R̄100 on both scales (p < 0.01,
Table A2 and Fig. A3). We  found a negative linear relationship
between species richness and It on both linear and log-log scales
(p < 0.01, Table A2 and Fig. A3). AIC strongly indicated the model on
the linear scale as the best one. We  found a negative linear relation-
ship between S and the breakpoint of the two-phase regression It
for R̄100 (p < 0.01), and also in this case AIC was  lower for the model
on the linear scale (Table A2 and Fig. A3).

4. Discussion

Our study shows that when increasing the probability of delet-
ing highly connected species there is a sharp transition in system
behaviour, from a region where food webs show high resistance to
species loss (‘random removal regime’) to a region where robustness

decreases rapidly and quickly reaches the robustness obtained with
the sequential attack from most- to least-connected species (‘inten-
tional attack regime’). This pattern was particularly clear when
using the exponential probability removal function, although a fast
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ecrease in robustness with increasing intentionality was observed
n the majority of food webs when using the power-law probability

ass function, in particular for R̄100.
For R̄100, we found that connectance increased the value of

ntentionality at which the transition between the two regimes
f robustness occurred (i.e. breakpoint of the two-phase regres-
ion) (Table A2). This result suggests that food webs with greater
onnectance are less affected than low-connectance food webs
y an increase of the extinction risk of highly connected species.
his result is in agreement with previously investigations show-
ng an increase of food web robustness with connectance (Dunne
t al., 2002a, 2004; Dunne and Williams, 2009). The regime tran-
ition at a larger value of intentionality that we found in our
nalyses for food webs with higher connectance may  have two
ifferent explanations. First, it may  be related to the buffer pro-
ided by an high number of trophic connections against further
xtinctions in the event of species loss (Dunne et al., 2002a). Sec-
nd, it may  be explained by the degree-distribution of food webs,
hich typically changes from distributions similar to power-law

o exponential or uniform with increasing connectance (Dunne,
006; Dunne et al., 2002b; Montoya and Sole, 2003). In fact,

n food webs with highly skewed degree-distribution, highly
onnected species are more likely to function as “hubs” and
heir extinction may  have dramatic effects on the stability of

cosystems, while in food webs with a more uniform degree-
istribution the extinction of highly connected species leads to a

ower number of secondary extinction, thus preserving food web
tability.
, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 0.9999. (For
e web version of the article.)

However, when using R̄50 as a measure of robustness, we did
not observe a significant relationship between connectance and
robustness, even after removing a clear outlier.

On the contrary, for both robustness measures we observed a
negative linear relationship between the breakpoint of the two-
phase regression and species richness (S). In empirical food webs,
no relationship is typically found between robustness and species
richness (Dunne et al., 2002a, 2004), whereas in model food webs
species richness increases robustness (Dunne and Williams, 2009).
In our extinction scenarios, larger food webs seem to be more
sensitive to the increase of intentionality (i.e. to the preferential
targeting of highly connected species). Also this pattern may be
explained by variations in the shape of the degree-distribution, as
its skewness tends to increase with species richness (Montoya and
Sole, 2003). In terms of conservation ecology, this result suggests
that protecting highly connected species may  be more important
in larger ecosystems. In fact, a smaller value of the breakpoint of
the two-phase regression of robustness on intentionality (i.e. the
transition from ‘random removal’ to ‘intentional attack’ regime)
increases the probability of falling in the intentional attack regime
in the case highly connected are preferentially targeted. Since in
larger food webs the transition in system behaviour occurred for
lower values of intentionality, it follows that the preservation of
highly connected species may be particularly important for the

stability of larger ecosystems.

In addition, this threshold effect strongly suggests that when
modelling extinction dynamics to carefully assign or estimate
a risk of primary extinction to species as a function of their
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Table 2
Two-phase linear regression of the robustness measures (R̄50 and R̄100) on intentionality I for the exponential probability function. The breakpoint It indicates the value of
the  intentionality at which the transition of system response occurred (i.e. slow-to-fast decrease in robustness). ˇ1 and ˇ2 are the slopes of the straight lines on the left and
on  the right of It , respectively, while ˛1 and ˛2 are the respective intercepts. We present standard errors for all parameters estimates except for ˛2, since it was  calculated
and  not estimated in the two-phase regression. p-Values of the Davies test for difference-in-slope are all smaller than 0.01 except for R̄50 for Mirror (p = 0.078).

Food web  Breakpoint It ˇ1 ˇ2 ˛1 ˛2

R̄50

Bridge Brook Lake 0.9 ± 0.01 0.0021 ± 0.00034 −0.03 ± 0.0009 0.463 ± 0.011 0.8
Coachella Valley 0.163 ± 0.002 0.00017 ± 0.0003 −0.0244 ± 0.002 0.4769 ± 0.002 0.7055
Cheasepeake Bay 0.095 ± 0.002 −0.0018 ± 0.001 −0.04168 ± 0.003 0.3551 ± 0.006 0.6949
St  Martin Island 0.194 ± 0.03 −0.0023 ± 0.0009 −0.0499 ± 0.0049 0.4263 ± 0.005 0.8807
St  Marks Seagrass 0.1175 ± 0.004 −0.000716 ± 0.0008 −0.05483 ± 0.003 0.4306 ± 0.005 0.911
Grassland 0.17 ± 0.05 −0.000301 ± 0.0007 −0.0398 ± 0.004 0.2377 ± 0.004 0.606
Ythan Estuary 91 0.025 ± 0.003 −0.00618 ± 0.008 −0.0587 ± 0.012 0.3812 ± 0.003 0.7289
Scotch Broom 0.022 ± 0.0002 −0.00553 ± 0.006 −0.0527 ± 0.008 0.3158 ± 0.02 0.6153
Stony  Stream 0.027 ± 0.001 −0.0012 ± 0.001 −0.0156 ± 0.001 0.4918 ± 0.003 0.5883
Little  Rock Lake 0.011 ± 0.002 0.00186 ± 0.0043 −0.0236 ± 0.005 0.4006 ± 0.014 0.537
Canton Creek 0.0115 ± 0.013 0.00014 ± 0.001 −0.01081 ± 0.001 0.4787 ± 0.003 0.5386
Ythan Estuary 96 0.015 ± 0.002 −0.0029 ± 0.008 −0.0534 ± 0.01 0.3717 ± 0.03 0.6695
El  Verde Rainforest 0.026 ± 0.003 −0.00187 ± 0.002 −0.03421 ± 0.002 0.4394 ± 0.01 0.6551
Mirror Lake 0.011 ± 0.006 −0.00124 ± 0.001 −0.00408 ± 0.001 0.4665 ± 0.004 0.4818

R̄100

Bridge Brook Lake 0.34 ± 0.008 0.0004 ± 0.0007 −0.054 ± 0.00375 0.8213 ± 0.004 1.345
Coachella Valley 0.18 ± 0.001 0.0041 ± 0.0013 −0.081 ± 0.0074 0.7501 ± 0.008 1.571
Cheasepeake Bay 0.072 ± 0.0002 −0.0009 ± 0.0012 −0.053 ± 0.0023 0.660 ± 0.0053 1.078
St  Martin Island 0.17 ± 0.0009 −0.0042 ± 0.0012 −0.094 ± 0.007 0.7496 ± 0.007 1.578
St  Marks Seagrass 0.096 ± 0.001 −0.003977 ± 0.002 −0.0816 ± 0.0042 0.761 ± 0.007 1.424
Grassland 0.11 ± 0.009 −0.00113 ± 0.001 −0.0483 ± 0.003 0.4754 ± 0.005 0.8879
Ythan Estuary 91 0.0122 ± 0.03 0.0011 ± 0.012 −0.0794 ± 0.014 0.6058 ± 0.039 1.054
Scotch Broom 0.0123 ± 0.002 −0.0059 ± 0.011 −0.0688 ± 0.013 0.4500 ± 0.037 0.8009
Stony  Stream 0.027 ± 0.01 −0.004848 ± 0.0034 −0.0765 ± 0.0048 0.888 ± 0.013 1.37
Little  Rock Lake 0.026 ± 0.009 −0.00245 ± 0.0021 −0.049 ± 0.003 0.7283 ± 0.008 1.042
Canton Creek 0.045 ± 0.04 −0.0066 ± 0.0038 −0.0986 ± 0.008 0.8913 ± 0.017 1.576
Ythan Estuary 96 0.0135 ± 0.01 −0.0043 ± 0.011 −0.082 ± 0.013 0.6168 ± 0.036 1.062
El  Verde Rainforest 0.02 ± 0.0003 −0.0059 ± 0.004 −0.0598 ± 0.0051 0.7963 ± 0.014 1.134
Mirror Lake 0.038 ± 0.004 −0.0038 ± 0.0022 −0.0619 ± 0.0041 0.9202 ± 0.001 1.34
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Fig. 4. Robustness R̄50 as a function of intentionality I when using the power law function in Eq. (5) for each of the 14 food webs we analysed. 
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ig. 5. Robustness R̄100 as a function of intentionality I for the power law functio
ntentional attack, that is with sequential primary extinctions from the most- to the

umber of trophic links. In fact, intentionality values slightly
maller or bigger than the breakpoint of the two-phase regres-
ion may  lead to substantially different patterns of secondary
xtinction, as well as largely different estimates of food web
obustness.

When using the power-law function to define the extinction
robability of highly connected species, patterns of robustness of
ood webs differed from those showed by Gallos et al. (2006) for
cale-free networks. Scale-free networks are typically highly robust
o random removal of nodes, but become fragile when highly con-
ected nodes are removed. In scale-free networks, the attack with

 = 1 in Eq. (5) can reduce the percolation threshold in scale free net-
ork to pc = 0.25, from pc = 1 when nodes are randomly removed

I = 0) (Gallos et al., 2006). Contrary to what found for scale-free
etworks, a small increase in the extinction risk of highly connected
pecies does not strongly reduce the robustness of food webs. This
s likely to be ascribed to the structural differences between scale-
ree networks and food webs. First, the number of nodes N is much
maller in food webs (typically <200, in our study 9 < N < 140) than
n scale-free networks (>1000) (Camacho et al., 2002; Dunne, 2006).
econd, food webs exhibit smaller maximum node degree, and the
egree-distribution in food webs is in general less skewed than

 power-law (Camacho et al., 2002; Dunne, 2006). Clearly, with
espect to a scale-free network, a smaller maximum degree of
he food web along with a less skewed degree-distribution would
educe the probability of attacking highly connected nodes with an
ncrease of intentionality. Since scale free networks did not show a
hreshold response to the increase in the intentionality parameter

Gallos et al., 2006), the emergence of the breakpoint does not seem
o be a general occurrence in all networks.

An interesting question is how the addition of ecological dynam-
cs may  modify the results presented here. In addition, the food
q. (5) for each of the 14 food webs we analysed. 
 (in red) indicates R̄100 for the
-connected species. Left to right I = 0, 0.25, 0.5, 1, 2, 4.

webs we  analysed in this work are binary, i.e. they describe only
the presence of trophic interaction and do not describe the amount
of energy passing from resource to consumer (i.e. interaction
strength). Thus, it would be interesting to use our methodology
with weighted food webs, that is food webs including information
about the amount of the energy and matter passing along a trophic
interaction (Bellingeri and Bodini, 2012; Bodini et al., 2009; Thierry
et al., 2011). Finally, the same approach we used in the present work
could be applied to food webs where rewiring (i.e. modification of
trophic interactions) may  occur. Rewiring in the food web may sim-
ply occur when a predator consumes prey species not included in
the trophic data. However, in modern data sets it is unlikely that
potential resources resulting from switching prey go unregistered
(Allesina and Pascual, 2009). Alternatively, food web rewiring may
occur when following the extinction of one of its competitors (com-
petitive release), a consumer might expand its diet to include a
prey that it had previously been not available (Staniczenko et al.,
2010, Thierry et al., 2011). Finally, a consumer species forages on the
subset of possible prey items that provides it with the highest net
energy intake per unit effort (optimal foraging strategy). Following
the loss of its preferred prey item(s), a predator may expand its diet
to include novel resources (Thierry et al., 2011). All the above pro-
cesses can thus be potentially included in the analysis of food webs
and exploring how food web  robustness changes with increasing
intentionality when modification of trophic interaction may occur
is thus encouraged.
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